Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T18:05:00.954Z Has data issue: false hasContentIssue false

High-strength Al87Ni8La5 bulk alloy produced by spark plasma sintering of gas atomized powders

Published online by Cambridge University Press:  31 January 2011

Sergio Scudino*
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01171 Dresden, Germany
Kumar B. Surreddi
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01171 Dresden, Germany
Hoang V. Nguyen
Affiliation:
Research Center for Machine Parts and Materials Processing, University of Ulsan, Namgu Mugeo 2-Dong, San 29, Ulsan 680-749, Republic of Korea
Gang Liu
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01171 Dresden, Germany; and State Key Laboratory for Mechanical Behavior of Materials and School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Mira Sakaliyska
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01171 Dresden, Germany
Ji S. Kim
Affiliation:
Research Center for Machine Parts and Materials Processing, University of Ulsan, Namgu Mugeo 2-Dong, San 29, Ulsan 680-749, Republic of Korea
Markus Wollgarten
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie (formerly Hahn Meitner Institute), D-14109 Berlin, Germany
Jurgen Eckert*
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01171 Dresden, Germany; and TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
b) This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy.
Get access

Abstract

In situ devitrification and consolidation of gas atomized Al87Ni8La5 glassy powders into highly dense bulk specimens was carried out by spark plasma sintering. Room temperature compression tests of the consolidated bulk material reveal remarkable mechanical properties, namely, high compression strength of 930 MPa combined with plastic strain exceeding 25%. These findings demonstrate that the combined devitrification and consolidation of glassy precursors by spark plasma sintering is a suitable method for the production of Al-based materials characterized by high strength and considerable plastic deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).CrossRefGoogle Scholar
2Inoue, A. and Kimura, H.: Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system. J. Light Met. 1, 31 (2001).CrossRefGoogle Scholar
3Inoue, A., Ohtera, K., Tsai, A.P. and Masumoto, T.: Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2). Jpn. J. Appl. Phys. 27, L479 (1988).CrossRefGoogle Scholar
4Inoue, A., Amiya, K., Yoshii, I., Kimura, H.M. and Masumoto, T.: Production of Al-based amorphous alloy wires with high tensile strength by melt extraction method. Mater. Trans., JIM 35, 485 (1994).CrossRefGoogle Scholar
5Kim, Y.H., Inoue, A. and Masumoto, T.: Ultrahigh mechanical strengths of Al88Y2Ni10–xMx (M= Mn, Fe or Co) amorphous alloys containing nanoscale fcc-Al particles. Mater. Trans., JIM 32, 599 (1991).CrossRefGoogle Scholar
6Kim, Y.H., Inoue, A. and Masumoto, T.: Ultrahigh tensile strength of Al88Y2Ni9M1 (M = Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles. Mater. Trans., JIM 31, 747 (1990).CrossRefGoogle Scholar
7Ohtera, K., Inoue, A. and Masumoto, T.: High mechanical strength of aluminum-based crystalline alloys produced by warm consolidation of amorphous powder. Mater. Sci. Eng., A 134, 1212 (1991).CrossRefGoogle Scholar
8Ohtera, K., Inoue, A., Terabayashi, T., Nagahama, H. and Masumoto, T.: Mechanical properties of an Al88.5Ni8Mm3.5 (Mm: Misch metal) alloy produced by extrusion of atomized amorphous plus fcc-Al phase powders. Mater. Trans., JIM 33, 775 (1992).CrossRefGoogle Scholar
9Kawamura, Y., Mano, H. and Inoue, A.: Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders. Scr. Mater. 44, 1599 (2001).CrossRefGoogle Scholar
10Inoue, A., Kawamura, Y., Kimura, H.M. and Mano, H.: Nanocrystalline Al-based bulk alloys with high strength above 1000 MPa. Mater. Sci. Forum 360-362, 129 (2001).CrossRefGoogle Scholar
11Mamedov, V.: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45, 322 (2002).CrossRefGoogle Scholar
12Gerking, L.: Powder from metal and ceramic melts by laminar gas streams. Powder Metall. Int. 25, 59 (1993).Google Scholar
13Roisnel, T. and Rodríguez-Carvajal, J.: WinPLOTR: A Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 378–381, 118 (2001).CrossRefGoogle Scholar
14Suryanarayana, C.: Processing of Metals and Alloys, Materials Science and Technology: A Comprehensive Treatment, Vol. 15, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, 1991).Google Scholar
15Perepezko, J.H., Hebert, R.J. and Tong, W.S.: Amorphization and nanostructure synthesis in Al alloys. Intermetallics 10, 1079 (2002).CrossRefGoogle Scholar
16Battezzati, L., Rizzi, P. and Rontó, V.: The difference in devitrification paths in Al87Ni7Sm6 and Al87Ni7La6 amorphous alloys. Mater. Sci. Eng., A 375–377, 927 (2004).CrossRefGoogle Scholar
17Sahoo, K.L., Wollgarten, M., Kim, K.B. and Banhart, J.: Crystallization behavior and microhardness evolution in Al92–xNi8Lax amorphous alloys. J. Mater. Res. 20, 2927 (2005).CrossRefGoogle Scholar
18Ye, F. and Lu, K.: Crystallization kinetics of Al–La–Ni amorphous alloy. J. Non-Cryst. Solids 262, 228 (2000).CrossRefGoogle Scholar
19Dienes, G.J. and Klemm, H.F.: Theory and application of the parallel plate plastometer. J. Appl. Phys. 17, 458 (1946).CrossRefGoogle Scholar
20Busch, R., Bakke, E. and Johnson, W.L.: Viscosity of the super-cooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 (1998).CrossRefGoogle Scholar
21Deledda, S., Eckert, J. and Schultz, L.: Mechanically alloyed Zr– Cu–Al–Ni–C glassy powders. Mater. Sci. Eng., A 375–377, 804 (2004).CrossRefGoogle Scholar
22Exner, H.E.: Reviews on Powder Metallurgy and Physical Ceramics, Principles of Single Phase Sintering (Freund Publishing House, Tel-Aviv, Israel, 1979).Google Scholar
23Sasaki, T.T., Mukai, T. and Hono, K.: A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 57, 189 (2007).CrossRefGoogle Scholar
24Sasaki, T.T., Hono, K., Vierke, J., Wollgarten, M. and Banhart, J.: Bulk nanocrystalline Al85Ni10La5 alloy fabricated by spark plasma sintering of atomized amorphous powders. Mater. Sci. Eng., A 490, 343 (2008).CrossRefGoogle Scholar
25Koch, C.C.: Intermetallic matrix composites prepared by mechanical alloying—A review. Mater. Sci. Eng., A 244, 39 (1998).CrossRefGoogle Scholar
26Clyne, T.W. and Withers, P.J.: An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, UK, 1993).CrossRefGoogle Scholar
27Wilkinson, D.S., Pompe, W. and Oeschner, M.: Modeling the mechanical behavior of heterogeneous multi-phase materials. Prog. Mater. Sci. 46, 379 (2001).CrossRefGoogle Scholar
28Nan, C.W. and Clarke, D.R.: The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater. 44, 3801 (1996).CrossRefGoogle Scholar
29Kouzeli, M. and Mortensen, A.: Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50, 39 (2002).CrossRefGoogle Scholar
30Scudino, S., Liu, G., Prashanth, K.G., Bartusch, B., Surreddi, K.B., Murty, B.S. and Eckert, J.: Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 57(6), 1703 (2009).Google Scholar
31Hull, D. and Bacon, D.J.: Introduction to Dislocations (Elsevier, Amsterdam, 2001).Google Scholar
32Ashby, M.F.: Strengthening Methods in Crystals, edited by Kelly, A. and Nicholson, R.B. (Elsevier, Amsterdam, 1971), pp. 137192.Google Scholar
33Arsenault, R.J. and Shi, N.: Dislocation generation due to differences between the coefficients of thermal expansion. Mater. Sci. Eng. 81, 175 (1986).CrossRefGoogle Scholar
34Nix, W.D. and Gao, H.J.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
35Metals Handbook ,9th ed., vol. 2, Properties and Selection: Nonferrous Alloys and Pure Metals, edited by Baker, H. (American Society for Metals, Materials Park, OH, 1979).Google Scholar
36Goods, S.H. and Brown, L.M.: Nucleation of cavity by plastic-deformation—Overview. Acta Mater. 27, 1 (1979).CrossRefGoogle Scholar
37He, G., Eckert, J., Loser, W. and Schultz, L.: Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
38Hays, C.C., Kim, C.P. and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed