Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:21:50.756Z Has data issue: false hasContentIssue false

High-resolution transmission-electron-microscopy study of ultrathin Al-induced crystallization of amorphous Si

Published online by Cambridge University Press:  31 January 2011

Zumin Wang*
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
Lars P.H. Jeurgens
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
Jiang Y. Wang
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
Fritz Phillipp
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
E.J. Mittemeijer
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The process of ultrathin Al-induced crystallization of amorphous Si (a-Si) has been investigated by using high-resolution transmission electron microscopy and Auger electron spectroscopic depth profiling. Ultrathin Al overlayers, with thicknesses of 2.0 and 4.5 nm, have been shown to be capable of inducing full crystallization of an a-Si bottom layer as thick as 40 nm at temperatures as low as 320 °C. After full crystallization of a-Si, the Al of the original 2.0-nm Al overlayer completely moved through the Si layer, leaving a high-purity, large-grained crystalline Si layer above it. Such movement of Al also occurs for the originally 4.5-nm Al overlayer, but in this case the crystallized Si layer is relatively fine-grained and contains ∼5.0 at.% of residual Al nanocrystals distributed throughout the layer. The observations have been interpreted on the basis of sites available for nucleation of crystalline Si in the microstructure of the Al/Si layer system upon annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.van der Wilt, P., Kane, M.G., Limanov, A.B., Firester, A.H., Goodman, L., Lee, J., Abelson, J., Chitu, A.M., and Im, J.S.: Lowtemperature polycrystalline silicon thin-film transistors and circuits on flexible substrates. MRS Bull. 31, 461 (2006).CrossRefGoogle Scholar
2.Shah, A., Torres, P., Tscharner, R., Wyrsch, N., and Keppner, H.: Photovoltaic technology: The case for thin-film solar cells. Science 285, 692 (1999).Google Scholar
3.Schropp, R.E.I., Carius, R., and Beaucarne, G.: Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells. MRS Bull. 32, 219 (2007).Google Scholar
4.MacDonald, B.A., Rollins, K., MacKerron, D., Rakos, K., Eveson, R., Hashimoto, K., and Rustin, B.: Flexible Flat Panel Displays, edited by Crawford, G.P. (John Wiley & Sons, Chichester, UK, 2005).Google Scholar
5.Schubert, M.B. and Werner, J.H.: Flexible solar cells for clothing. Mater. Today 9, 42 (2006).CrossRefGoogle Scholar
6.Konno, T.J. and Sinclair, R.: Crystallization of silicon in aluminium/ amorphous-silicon multilayers. Philos. Mag. B 66, 749 (1992).CrossRefGoogle Scholar
7.Konno, T.J. and Sinclair, R.: Metal-contact-induced crystallization of semiconductors. Mater. Sci. Eng., A 179, 426 (1994).Google Scholar
8.Hayzelden, C. and Batstone, J.L.: Silicide formation and silicidemediated crystallization of nickel-implanted amorphous silicon thin films. J. Appl. Phys. 73, 8279 (1993).Google Scholar
9.Yoon, S.Y., Oh, J.Y., Kim, C.O., and Jang, J.: Low temperature solid phase crystallization of amorphous silicon at 380 [degree] C. J. Appl. Phys. 84, 6463 (1998).CrossRefGoogle Scholar
10.Lee, S.B., Choi, D-K., Phillipp, F., Jeon, K-S., and Kim, C.K.: In situ high-resolution transmission-electron-microscopy study of interfacial reactions of Cu thin films on amorphous silicon. Appl. Phys. Lett. 88, 083117 (2006).CrossRefGoogle Scholar
11.Nast, O. and Wenham, S.R.: Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum- induced crystallization. J. Appl. Phys. 88, 124 (2000).Google Scholar
12.Gall, S., Muske, M., Sieber, I., Nast, O., and Fuhs, W.: Aluminuminduced crystallization of amorphous silicon. J. Non-Cryst. Solids 299302, 741 (2002).Google Scholar
13.Wang, J.Y., He, D., Zhao, Y.H., and Mittemeijer, E.J.: Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon. Appl. Phys. Lett. 88, 061910 (2006).CrossRefGoogle Scholar
14.Wang, J.Y., Wang, Z.M., and Mittemeijer, E.J.: Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers. J. Appl. Phys. 102, 113523 (2007).CrossRefGoogle Scholar
15.Wang, Z.M., Wang, J.Y., Jeurgens, L.P.H., and Mittemeijer, E.J.: Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Phys. Rev. B: Condens. Matter 77, 045424 (2008).CrossRefGoogle Scholar
16.Wang, Z.M., Wang, J.Y., Jeurgens, L.P.H., and Mittemeijer, E.J.: Tailoring the ultrathin Al-induced crystallization temperature of amorphous Si by application of interface thermodynamics. Phys. Rev. Lett. 100, 125503 (2008).Google Scholar
17.Timmermans, B., Vaeck, N., Hubin, A., and Reniers, F.: Chemical effects in Auger electron spectra of aluminium. Surf. Interface Anal. 34, 356 (2002).CrossRefGoogle Scholar
18.Strecker, A., Baeder, U., Kelsch, M., Salzberger, U., Sycha, M., Gao, M., Richter, G., and Benthem, K.V.: Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning. Z. Metallkd. 94, 290 (2003).CrossRefGoogle Scholar
19.Yasuo, W. and Shigeru, N.: Grain growth mechanism of heavily phosphorus-implanted polycrystalline silicon. J. Electrochem. Soc. 125, 1499 (1978).Google Scholar
20.Thompson, C.V.: Grain growth in polycrystalline thin films of semiconductors. Interface Sci. 6, 85 (1998).Google Scholar
21.Liu, H., Zhang, Y.F., Wang, D.Y., Jia, J.F., and Xue, Q.K.: Roomtemperature growth of Al films on Si(111)-7x7 surface. Chin. Phys. Lett. 21, 1608 (2004).Google Scholar
22.Wang, Z.M., Wang, J.Y., Jeurgens, L.P.H., Phillipp, F., and Mittemeijer, E.J.: Origins of stress development during metal-induced crystallization and layer exchange: Annealing amorphous Ge/crystalline Al bilayers. Acta Mater. 56, 5047 (2008).Google Scholar