Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T02:47:43.226Z Has data issue: false hasContentIssue false

Electronic structure of free-standing InP and InAs nanowires

Published online by Cambridge University Press:  03 March 2011

B. Lassen*
Affiliation:
Department of Physics, University of Lund, 22100 Lund, Sweden
M. Willatzen
Affiliation:
Mads Clausen Institute, University of Southern Denmark, DK-6400 Sønderborg, Denmark
R. Melnik
Affiliation:
Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
L.C. Lew Yan Voon
Affiliation:
Department of Physics, Wright State University, Dayton, Ohio 45435
*
a) Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

An eight-band k·p theory that does not suffer from the spurious solution problem is demonstrated. It is applied to studying the electronic properties of InP and InAs free-standing nanowires. Band gaps and effective masses are reported as a function of size, shape, and orientation of the nanowires. We compare our results with experimental work and with other calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Morales, A.M., Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208 (1998).CrossRefGoogle ScholarPubMed
2.Duan, X., Lieber, C.M.: General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298 (2000).3.0.CO;2-Y>CrossRefGoogle Scholar
3.Hu, J., Li, L-S., Yang, W., Manna, L., Wang, L-W., Alivisatos, A.P.: Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060 (2001).CrossRefGoogle ScholarPubMed
4.Katz, D., Wizansky, T., Millo, O., Rothenberg, E., Mokari, T., Banin, U.Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys. Rev. Lett. 89(8), 086801-1 (2002).CrossRefGoogle ScholarPubMed
5.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897 (2001).CrossRefGoogle ScholarPubMed
6.Johnson, J.C., Choi, H-J., Knutsen, K.P., Schaller, R.D., Yang, P., Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1(2), 106 (2002).CrossRefGoogle ScholarPubMed
7.Duan, X., Huang, Y., Agarwal, R., Lieber, C.M.: Single-nanowire electrically driven lasers. Nature 421, 241 (2003).CrossRefGoogle ScholarPubMed
8.Seo, H.W., Bae, S.Y., Park, J., Yang, H., Park, K.S., Kim, S.: Strained gallium nitride nanowires. J. Chem. Phys. 116(21), 9492 (2002).CrossRefGoogle Scholar
9.Wang, Y., Zhang, L., Liang, C., Wang, G., Peng, X.: Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 317(3–4), 314 (2002).CrossRefGoogle Scholar
10.Gudiksen, M.S., Wang, J., Lieber, C.M.: Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106(16), 4036 (2002).CrossRefGoogle Scholar
11.Gupta, R., Xiong, Q., Adu, C.K., Kim, U.J., Eklund, P.C.Laser-induced fano resonance scattering in silicon nanowires. Nano Lett. 3(5), 627 (2003.CrossRefGoogle Scholar
12.Citrin, D.S., Chang, Y-C.Valence-subband structures of GaAs/Alx Ga1−x As quantum wires: The effect of split-off bands. Phys. Rev. B 40(8), 5507 (1989).CrossRefGoogle Scholar
13.Sercel, P.C., Vahala, K.J.Analytical technique for determining the polarization dependence of optical matrix elements in quantum wires with band-coupling effects. Appl. Phys. Lett. 57(6), 545 (1990).CrossRefGoogle Scholar
14.Sercel, P.C., Vahala, K.J.Analytical technique for determining quantum-wire and quantum-dot band structure in the multiband envelope-function representation. Phys. Rev. B 42(6), 3690 (1990).CrossRefGoogle Scholar
15.Sercel, P.C., Vahala, K.J.Polarization dependence of optical absorption and emission in quantum wires. Phys. Rev. B 44(11), 5681 (1991).CrossRefGoogle ScholarPubMed
16.Persson, M.P., Xu, H.Q.Electronic structure of nanometer-scale GaAs whiskers. Appl. Phys. Lett. 81(7), 1309 (2002.CrossRefGoogle Scholar
17.Persson, M.P., Xu, H.Q.Giant polarization anisotropy in optical transitions of free-standing inp nanowires. Phys. Rev. B 70, 161310(R) (2004).CrossRefGoogle Scholar
18.Persson, M.P., Xu, H.Q.: Electronic structure of [100]-oriented freestanding semiconductor nanowires. Nano Lett. 4(12), 2409 (2004).CrossRefGoogle Scholar
19.Li, J., Wang, L-W.Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B 72(12), 125325 (2005).CrossRefGoogle Scholar
20.Schmidt, T.M., Miwa, R.H., Venezuela, P., Fazzio, A.Stability and electronic confinement of free-standing inp nanowires: Ab initio calculations. Phys. Rev. B 72(16), 193404 (2005).CrossRefGoogle Scholar
21.Lassen, B., Voon, L.C. Lew Yan, Melnik, R., Willatzen, M.: Exact envelope-function theory versus symmetrized Hamiltonian for quantum wires: A comparison. Solid State Commun. 132, 141 (2004).CrossRefGoogle Scholar
22.Maslov, A.V., Ning, C.Z.Radius-dependent polarization anisotropy in semiconductor nanowires. Phys. Rev. B 72(16), 161310(R) (2005).CrossRefGoogle Scholar
23.Voon, L.C. Lew Yan, Willatzen, M., Cardona, M., Ram-Mohan, L.R.Comment on “multiband coupling effects on electron quantum well intersubband transitions.” J. Appl. Phys. 80(1), 600 (1996).CrossRefGoogle Scholar
24.Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., Samuelson, L.: One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87 (2002).CrossRefGoogle Scholar
25.Meney, A.T., Gonul, B., O’Reilly, E.P.: Evaluations of various approximations used in the envelope-function method. Phys. Rev. B 50, 10893 (1994).CrossRefGoogle ScholarPubMed
26.Burt, M.G.The justification for applying the effective-mass approximation to microstuctures. J. Phys.: Condens. Matter 4, 6651 (1992).Google Scholar
27.Pokatilov, E.P., Fonoberov, V.A., Fomin, V.M., Devreese, J.T.: Development of an eight-band theory for quantum dot heterostructures. Phys. Rev. B 64, 245328 (2001).CrossRefGoogle Scholar
28.Kane, E.O.: Energy band structure in p-type germanium and silicon. J. Phys. Chem. Solid. 1, 82 (1956).CrossRefGoogle Scholar
29.Yang, W., Chang, K.Origin and elimination of spurious solutions of the eight-band k·p theory. Phys. Rev. B 72(3), 233309 (2005).Google Scholar
30.Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
31.Hendorfer, G., Seto, M., Ruckser, H., Jantsch, W., Helm, M., Brunthaler, G., Jost, W., Obloh, H., Kohler, K., As, D.J.: Enhancement of the in-plane effective mass of electrons in modulation-doped In x Ga1−x as quantum wells due to confinement effects. Phys. Rev. B 48(4), 2328 (1993).CrossRefGoogle Scholar