Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T20:51:55.987Z Has data issue: false hasContentIssue false

Elastic constants of single crystal γ – TiAl

Published online by Cambridge University Press:  03 March 2011

Y. He
Affiliation:
Center for Materials Science, Los-Alamos National Laboratory, MS K765, Los Alamos, New Mexico 87545
R.B. Schwarz
Affiliation:
Center for Materials Science, Los-Alamos National Laboratory, MS K765, Los Alamos, New Mexico 87545
A. Migliori
Affiliation:
Center for Materials Science, Los-Alamos National Laboratory, MS K765, Los Alamos, New Mexico 87545
S.H. Whang
Affiliation:
Department of Materials Science and Engineering, Polytechnic University, Six Metrotech Center, Brooklyn, New York 11201
Get access

Abstract

The six independent second-order elastic stiffness coefficients of a Ti44Al56 single crystal (L10 structure) have been measured at room temperature for the first time using a resonant ultrasonic spectroscopy (RUS) technique. These data were used to calculate the orientation dependence of Young's modulus and the shear modulus. Young's modulus is found to reach a maximum near a [111] direction, close to the normal to the most densely packed planes. The elastic moduli and Poisson's ratio for polycrystalline materials, calculated by the averaging scheme proposed by Hill, are in good agreement with experimental data and theoretical calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fleischer, R. L., J. Mater. Sci. 22, 2281 (1987).CrossRefGoogle Scholar
2Taub, A. I. and Fleischer, R. L., Science 243, 616 (1989).CrossRefGoogle Scholar
3Kim, Y. W., JOM 41(7), 24 (1989).CrossRefGoogle Scholar
4Pearson's Handbook of Crystallographic Data for Intermetallic Phases, edited by Villars, P. and Calvert, L. D. (American Society for Metals, Metals Park, OH, 1985), Vol. 2.Google Scholar
5Kim, Y. W. and Dimiduk, D. M., JOM 43(8), 40 (1991).CrossRefGoogle Scholar
6Elliot, R. P. and Rostoker, W., Acta Metall. 2, 884 (1954).CrossRefGoogle Scholar
7Vujic, D., Li, Z., and Whang, S. H., Metall. Trans. A 19A, 2445 (1988).CrossRefGoogle Scholar
8Froes, F. H., Suryanarayana, C., and Eliezer, D., J. Mater. Sci. 27, 5113 (1992).CrossRefGoogle Scholar
9Kim, Y. W., JOM 46(7), 30 (1994).CrossRefGoogle Scholar
10Kawabata, T., Kanai, T., and Izumi, O., Acta Metall. 33, 1355 (1985).CrossRefGoogle Scholar
11Fu, C. L. and Yoo, M. H., Philos. Mag. Lett. 62, 159 (1990).CrossRefGoogle Scholar
12Kim, K. Y., Phys. Rev. B 49, 3713 (1994).CrossRefGoogle Scholar
13Fraser, D. B. and LeCraw, R.C., Rev. Sci. Instrum. 35, 1113 (1964).CrossRefGoogle Scholar
14Demarest, H. H. Jr., J. Acoust. Soc. Am. 49, 768 (1969).CrossRefGoogle Scholar
15Ohno, I., J. Phys. Earth 24, 355 (1976).CrossRefGoogle Scholar
16Migliori, A., Sarrao, J. L., Visscher, W. M., Bell, T. M., Lei, M., Fisk, Z., and Leisure, R. G., Physica B 183, 1 (1993).CrossRefGoogle Scholar
17Yasuda, H. and Koiwa, M., J. Phys. Chem. Solids 52, 723 (1991).Google Scholar
18Yasuda, H., Takasugi, T., and Koiwa, M., Acta Metall. Mater. 40, 381 (1992).CrossRefGoogle Scholar
19Tanaka, K., Yasuda, H., and Koiwa, M., Proc. 3rd Japan Int. SAMPE Symp. 1171 (1993).Google Scholar
20Chu, F., Lei, M., Migliori, A., Chen, S. P., and Mitchell, T. E., Philos. Mag. B 70, 867 (1994).CrossRefGoogle Scholar
21Chu, F., Lei, M., Maloy, S. A., Mitchell, T. E., Migliori, A., and Garrett, J., Philos. Mag. B (1995, in press).Google Scholar
22Kuokkala, V-T. and Schwarz, R. B., Rev. Sci. Instrum. 63, 3136 (1992).CrossRefGoogle Scholar
23Johnson, W. L., Norton, S. J., Bendec, F., and Pless, R., J. Acoust. Soc. Am. 91, 2637 (1992).CrossRefGoogle Scholar
24Visscher, W. M., Los Alamos Report, LA-UR-91-2884 (1991).Google Scholar
25Srinivasan, S. R. and Schwarz, R. B., J. Mater. Res. 7, 1610 (1992).CrossRefGoogle Scholar
26Desch, P. B. and Schwarz, R. B., unpublished results, Los Alamos National Laboratory.Google Scholar
27Kelly, A. and MacMillan, N. H., Strong Solids, 3rd ed. (Oxford University Press, Oxford, 1986), p. 395.Google Scholar
28Bisplinghoff, R. L., Mar, J. W., and Pian, T.H.H., Statics of Deformable Solids (Addison-Wesley, Reading, MA, 1965), Chap. 7.Google Scholar
29Auld, B. A., Acoustic Fields and Waves in Solids (John Wiley & Sons, New York, 1973), Vol. 1, Chap. 3.Google Scholar
30Anderson, O. L., J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar
31Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregated Properties: A Handbook, 2nd ed. (The MIT Press, Cambridge, MA, 1971).Google Scholar
32Schreiber, E., Anderson, O. L., and Soga, N., in Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973), pp. 2931.Google Scholar
33Lipsitt, A., Schechtman, D., and Schafrik, R. E., Metall, Trans. A 6, 1991 (1975).CrossRefGoogle Scholar
34Schafrik, E., Metall. Trans. A 8, 1003 (1977).CrossRefGoogle Scholar