Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T03:07:31.913Z Has data issue: false hasContentIssue false

Effective Young's modulus of carbon nanofiber array

Published online by Cambridge University Press:  03 March 2011

Yi Zhang
Affiliation:
Nanoconduction Inc., Sunnyvale, California 94089; and University of California, Santa Cruz, California 95064
Ephraim Suhir*
Affiliation:
Nanoconduction Inc., Sunnyvale, California 94089; and University of California, Santa Cruz, California 95064
Yuan Xu
Affiliation:
Nanoconduction Inc., Sunnyvale, California 94089; and University of California, Santa Cruz, California 95064
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We developed a methodology for the evaluation of the effective Young's modulus (EYM) of the vertically aligned carbon nanofibers array (CNFA). The carbon nanofibers array is treated in this study as a continuous structural element, and, for this reason, the determined EYM might be appreciably different (actually, lower) than the Young's modulus (YM) of the material of an individual carbon nanotube or a nanofiber. The developed methodology is based on the application of a compressive load onto the carbon nanofibers array, so that each individual carbon nanofiber experiences axial compression and is expected to buckle under the compressive load. The relationship between the applied compressive stress and the induced displacement of the carbon nanofiber array is measured using a table version of an Instron tester. It has been found that the carbon nanofiber array exhibits nonlinear behavior and the EYM increases with an increase in the compressive load. The largest measured EYM of the carbon nanofiber array turned out to be about 90 GPa. It has been found also that the fragmentary pieces of lateral graphitic layer in the carbon nanofiber array resulted in substantial worsening of the quality of the carbon nanofibers. This might be one of the possible reasons why the measured EYM turned out to be much lower than the theoretical predictions reported in the literature. The measured EYM is also much lower than the reported in the literature atomic force microscopy (AFM)-based data for the EYM for multiwalled carbon nanotubes (MWCNTs) that possess uniform and straight graphitic wall structure. Our transmission electron microscope (TEM) observations have revealed indeed poor structural qualities of the plasma-enhanced chemical vapor deposition (PECVD) grown CNFs.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
2.Ngo, Q., Cruden, B.A., Cassell, A.M., Sims, G., Meyyappan, M., Li, J., Yang, C.Y.: Thermal interface properties of Cu-filled vertical aligned carbon nanofiber arrays. Nano Lett. 4, 2403 (2004).Google Scholar
3.Xu, J., Fisher, T.S.: Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transfer 49, 1658 (2006).Google Scholar
4.Wang, X.W., Zhong, Z., Xu, J.: Noncontact thermal characterization of multiwall carbon nanotubes. J. Appl. Phys. 97, 064302 (2005).Google Scholar
5.Xu, Y., Zhang, Y., Wang, X.W. Thermal properties characterization of vertically aligned carbon nanotubes array used for IC cooling. J. Appl. Phys.; Available online in Sept.Google Scholar
6.Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., Shimizu, T.: Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005).Google Scholar
7.Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).Google Scholar
8.Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96 (2006).Google Scholar
9.Lourie, O., Wagner, H.D.: Evaluation of Young’s modulus of carbon nanotubes by micro-raman spectrography. J. Mater. Res. 13(9), 2418(1998).Google Scholar
10.Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).Google Scholar
11.Yao, N., Lordi, V.: Young’s modulus of single walled carbon nanotubes. J. Appl. Phys. 84, 1939 (1998).CrossRefGoogle Scholar
12.Hernandez, E., Gose, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998).Google Scholar
13.Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single walled nanotubes. Phys. Rev. B 58, 14013 (1998).Google Scholar
14.Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1997).Google Scholar
15.Gaillard, J., Skove, M., Rao, A.M.: Mechanical properties of chemical vapor deposition-grown multiwalled carbon nanotubes. Appl. Phys. Lett. 86, 233109 (2005).Google Scholar
16.Wei, C., Srivastava, D.: Nanomechanics of carbon nanofibers: Structural and elastic properties. Appl. Phys. Lett. 85, 2208 (2004).Google Scholar
17.Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stöckli, T., Méténier, K., Bonnamy, S., Béguin, F., Burnham, N.A., Forró, L.: Elastic modulus of ordered and disordered multi-walled carbon nanotubes. Adv. Mater. 11, 161 (1999).Google Scholar
18.Cao, A., Dickrell, P., Sawyer, W.G., Ghasemi-Nejhad, M., Ajayan, P.: Super compressible foam like carbon nanotube film. Science 310, 1307 (2005).Google Scholar
19.Zhou, X., Zhou, J.J., Ou-Yang, Z.C.: Strain energy and Young’s modulus of single–wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62, 13692 (2000).Google Scholar
20.Ru, C.Q.: Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62, 9973 (2000).Google Scholar
21.Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).Google Scholar
22.Kuzumaki, T., Mistuda, Y.: Dynamic measurement of electrical conductivity of carbon nanotubes during mechanical deformation by nanoprobe manipulation in transmission electron microscopy. Appl. Phys. Lett. 85, 1250 (2004).Google Scholar
23.Hishio, M., Akita, S., Nakayama, Y.: Buckling test under axial compression for multiwall carbon nanotubes. Jpn. J. Appl. Phys. 44 L1097(2005).Google Scholar
24.Govindjee, S., Sackman, J.L.: On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun. 110, 227 (1999).Google Scholar
25.Harik, V.M.: Ranges of applicability for the continuum beam model in the mechanics of carbon nano-tubes and nano-rods. Solid State Commun. 120, 331 (2001).Google Scholar
26.Timoshenko, S.P., Gere, J.: Theory of Elastic Stability (McGraw-Hill, New York, 1988).Google Scholar
27.Suhir, E.: Structural Analysis in Microelectronic and Fiber Optic Systems, Vol. 1, Basic Principles of Engineering Elasticity and Fundamentals of Structural Analysis (Van Nostrand Reinhold, New York, 1991).Google Scholar
28.Lourie, O., Cox, D.M., Wagner, H.D.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638 (1988).Google Scholar
29.Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S., Superfine, R.: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582 (1997).Google Scholar
30.Ru, C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J. Appl. Phys. 87, 7227 (2000).Google Scholar
31.Ru, C.Q.: Column buckling of multi-walled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962 (2000).Google Scholar
32.Ru, C.Q.: Degraded axial buckling strain of multi-walled carbon nanotubes due to interlayer slips. J. Appl. Phys. 89, 3426 (2001).CrossRefGoogle Scholar
33.Ru, C.Q.: Axially compressed buckling of a double-walled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 49, 1265 (2001).Google Scholar
34.Ru, C.Q.: Elastic buckling of single walled carbon nanotube ropes under high pressure. Phys. Rev. B 62, 10405 (2000).Google Scholar
35.Wen, J.G., Huang, Z.P., Wang, D.Z., Chen, J.H., Yang, S.X., Ren, Z.F., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F., Reed, M.A.: Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16, 3246 (2001).Google Scholar
36.Cruden, B.A., Cassell, A.M., Ye, Q., Meyyappan, M.: Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J. Appl. Phys. 94, 4070 (2003).Google Scholar
37.Li, J., Steven, R., Delzeit, L., Ng, H.T., Cassell, A., Han, J., Meyyappan, M.: Electronic properties of multiwalled carbon nanotubes in an embedded vertical array. Appl. Phys. Lett. 81, 910 (2002).Google Scholar