Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T03:11:12.823Z Has data issue: false hasContentIssue false

Effect of seed layer with low lead content on electrical properties of PZT thin films

Published online by Cambridge University Press:  02 May 2017

Liubov Delimova*
Affiliation:
Division of Solid State Electronics, Ioffe Institute, Saint-Petersburg 194021, Russian Federation
Ekaterina Guschina
Affiliation:
Division of Solid State Physics, Ioffe Institute, Saint-Petersburg 194021, Russian Federation
Nina Zaitseva
Affiliation:
Division of Physics of Dielectric and Semiconductors, Ioffe Institute, Saint-Petersburg 194021, Russian Federation
Sergey Pavlov
Affiliation:
Department of Diagnostic of Materials and Structures of SSE, Ioffe Institute, Saint-Petersburg 194021, Russian Federation
Dmitry Seregin
Affiliation:
SEC “Technological Center,”Moscow Technological University (MIREA), Moscow 119454, Russian Federation
Konstantin Vorotilov
Affiliation:
SEC “Technological Center,”Moscow Technological University (MIREA), Moscow 119454, Russian Federation
Alexander Sigov
Affiliation:
SEC “Technological Center,”Moscow Technological University (MIREA), Moscow 119454, Russian Federation
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Two-step crystallization process based on a low-Pb-content seed layer is proposed to form PZT films by the chemical solution deposition. The first crystallization step was performed after the deposition from precursor solutions with 0 and 5 wt% Pb excess, which provides a low nucleation rate and the strong perovskite (111) orientation. The bulk film was obtained from solutions with a 30 wt% Pb excess, which ensures a high growth rate and eliminates formation of pyrochlore residuals. Some films with a fixed Pb excess were prepared for comparison. It is shown that the low-Pb-content seed layer can sufficiently enhance the texture of perovskite (111) grains thus providing the highest polarization magnitudes as compared to films prepared with the fixed Pb content. The lead content and the crystallization of the seed layer are found to affect the grain-boundary conduction, which, in turn, influences the polarization dependence of transient currents.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Paul Muralt

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S.: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).Google Scholar
Izyumskaya, N., Alivov, Y-I., Cho, S-J., Morkoç, H., Lee, H., and Kang, Y-S.: Processing, structure, properties, and applications of PZT thin films. Crit. Rev. Solid State Mater. Sci. 32, 111 (2007).CrossRefGoogle Scholar
Eom, C.B. and Trolier-McKinstry, S.: Thin-film piezoelectric MEMS. MRS Bull. 37, 1007 (2012).CrossRefGoogle Scholar
Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).Google Scholar
Vorotilov, K.A. and Sigov, A.S.: Ferroelectric memory. Phys. Solid State 54, 894 (2012).Google Scholar
Park, J.C., Khym, S., and Park, J.Y.: Micro-fabricated lead zirconate titanate bent cantilever energy harvester with multi-dimensional operation. Appl. Phys. Lett. 102, 043901 (2013).CrossRefGoogle Scholar
Whatmore, R.W.: Pyroelectric arrays: Ceramics and thin films. J. Electroceram. 13, 139 (2004).CrossRefGoogle Scholar
Melo, M., Araujo, E.B., Shvartsmann, V.V., Shur, V.Ya., and Kholkin, A.L.: Thickness effect on the structure, grain size, and local piezoresponse of self-polarized lead lanthanum zirconate titanate thin films. J. Appl. Phys. 120, 054101 (2016).Google Scholar
Panda, P.K. and Sahoo, B.: PZT to lead free piezo ceramics: A review. Ferroelectrics 474(1), 128 (2015).Google Scholar
Mousharraf, A.: Is PZT an environment friendly piezoelectric material? Mater. Today. Available at: http://www.materialstoday.com/characterization/comment/is-pzt-an-environment-friendly-piezoelectric-mater/ (accessed August 23, 2012).Google Scholar
Kim, K. and Lee, S.: Integration of lead zirconium titanate thin films for high density ferroelectric random access memory. J. Appl. Phys. 100, 051604 (2006).CrossRefGoogle Scholar
Wouters, D.J., Maes, D., Goux, L., Lisoni, J.G., Paraschiv, V., Johnson, J.A., Schwitters, M., Everaert, J-L., Boullart, W., Schaekers, M., Willegems, M., Vander Meeren, H., Haspeslagh, L., Artoni, C., Caputa, C., Casella, P., Corallo, G., Russo, G., Zambrano, R., Monchoix, H., Vecchio, G., and Van Autryve, L.: Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory. J. Appl. Phys. 100, 051603 (2006).CrossRefGoogle Scholar
Toshiba develops world’s highest bandwidth, highest density non-volatile RAM (2009). Available at: https://www.toshiba.co.jp/about/press/2009_02/pr0902.htm.Google Scholar
Meena, J.S., Sze, S.M., Chand, U., and Tseng, T-Y.: Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014).Google Scholar
Park, M.H., Lee, Y.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T., and Hwang, C.S.: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811 (2015).Google Scholar
Kim, H.J., Park, M.H., Kim, Y.J., Lee, Y.H., Moon, T., Kim, K.D., Hyun, S.D., and Hwang, C.S.: A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale 8, 1383 (2016).Google Scholar
Huang, F., Chen, X., Liang, X., Qin, J., Zhang, Y., Huang, T., Wang, Z., Peng, B., Zhou, P., Lu, H., Zhang, L., Deng, L., Liu, M., Liu, Q., Tian, H., and Bi, L.: Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition. Phys. Chem. Chem. Phys. 19, 3486 (2017).CrossRefGoogle ScholarPubMed
Park, J.H., Kim, H.Y., Seok, K.H., Kiaee, Z., Lee, S.K., and Joo, S.K.: Multibit ferroelectric field-effect transistor with epitaxial-like Pb(Zr,Ti)O3 . J. Appl. Phys. 119, 124108 (2016).Google Scholar
Hu, J-M., Chen, L-Q., and Nan, C-W.: Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28, 15 (2016).Google Scholar
Tiercelin, N., Dusch, Y., Preobrazhensky, V., and Pernod, P.: Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. J. Appl. Phys. 109, 07D726 (2011).CrossRefGoogle Scholar
Newns, D.M., Elmegreen, B.G., Liu, X-H., and Martyna, G.J.: High response piezoelectric and piezoresistive materials for fast, low voltage switching: Simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 24, 3672 (2012).Google Scholar
Chang, J.B., Miyazoe, H., Copel, M., Solomon, P.M., Liu, X-H., Shaw, T.M., Schrott, A.G., Gignac, L.M., Martyna, G.J., and Newns, D.M.: First realization of the piezoelectronic stress-based transduction device. Nanotechnology 26, 375201 (2015).Google Scholar
Magdău, I-B., Liu, X-H., Kuroda, M.A., Shaw, T.M., Crain, J., Solomon, P.M., Newns, D.M., and Martyna, G.J.: The piezoelectronic stress transduction switch for very large-scale integration, low voltage sensor computation, and radio frequency applications. Appl. Phys. Lett. 107, 073505 (2015).CrossRefGoogle Scholar
Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).CrossRefGoogle Scholar
Schwartz, R.W., Voigt, J.A., Tuttle, B.A., Payne, D.A., Reichert, T.L., and DaSalla, R.S.: Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol–gel derived lead zirconate titanate thin films. J. Mater. Res. 12, 444 (1997).Google Scholar
Zhigalina, O.M., Vorotilov, K.A., Sigov, A.S., and Kumskov, A.S.: Influence of crystallization process on structural state of CSD BST thin films. Ferroelectrics 335, 3 (2006).Google Scholar
Zhigalina, O.M., Mishina, E.D., Sherstyuk, N.E., Vorotilov, K.A., Vasiljev, V.A., Sigov, A.S., Lebedev, O.I., Grigoriev, Yu.V., De Santo, M.P., Barberi, R., and Rasing, Th.: Crystallization of PZT in alumina membrane channels. Ferroelectrics 336, 247 (2006).CrossRefGoogle Scholar
Brooks, K.G., Reaney, I.M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N.: Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates. J. Mater. Res. 9, 2540 (1994).Google Scholar
Muralt, P.: Texture control and seeded nucleation of nanosize structures of ferroelectric thin films. J. Appl. Phys. 100, 051605 (2006).Google Scholar
Sigov, A.S., Vorotilov, K.A., and Zhigalina, O.M.: Effect of lead content on microstructure of sol–gel PZT structures. Ferroelectrics 433, 146 (2012).Google Scholar
Chen, S-Y. and Chen, I.W.: Temperature–time texture transition of Pb(Zr1−x Ti x )O3 thin films: I, role of Pb-rich intermediate phases. J. Am. Ceram. Soc. 77, 2332 (1994).CrossRefGoogle Scholar
Song, Y.J., Zhu, Y., and Desu, S.B.: Low temperature fabrication and properties of sol–gel derived (111) oriented Pb(Zr1−x Ti x )O3 thin films. Appl. Phys. Lett. 72, 2686 (1998).Google Scholar
Schneller, T. and Waser, R.: Chemical modifications of Pb(Zr0.3Ti0.7)O3 precursor solutions and their influence on the morphological and electrical properties of the resulting thin films. J. Sol-Gel Sci. Technol. 42, 337 (2007).Google Scholar
Ellerkmann, U., Schneller, T., Nauenheim, C., Böttger, U., and Waser, R.: Reduction of film thickness for chemical solution deposited PbZr0.3Ti0.7O3 thin films revealing no size effects and maintaining high remanent polarization and low coercive field. Thin Solid Films 516, 4713 (2008).Google Scholar
Jones, J.L., LeBeau, J.M., Nikkel, J., Oni, A.A., Dycus, J.H., Cozzan, C., Lin, F-Y., Chernatynskiy, A., Nino, J.C., Sinnott, S.B., Mhin, S., Brennecka, G.L., and Ihlefeld, J.: Combined experimental and computational methods reveal the evolution of buried interfaces during synthesis of ferroelectric thin films. Adv. Mater. Interfaces 2, 1500181 (2015).Google Scholar
Aoki, K., Fukuda, Y., Numata, K., and Nishimura, A.: Effects of titanium buffer layer on lead–zirconate–titanate crystallization processes in sol–gel deposition technique. Jpn. J. Appl. Phys. 34, 192 (1995).Google Scholar
Chung, S., Kim, J.W., Kim, G.H., Park, C.O., and Lee, W.J.: Formation of a lead zirconate titanate (PZT)/Pt interfacial layer and structural changes in the Pt/Ti/SiO2/Si substrate during the deposition of PZT thin film by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 36, 4386 (1997).Google Scholar
Millon, C., Malhaire, C., Dubois, C., and Barbier, D.: Control of the Ti diffusion in Pt/Ti bottom electrodes for the fabrication of PZT thin film transducers. Mater. Sci. Semicond. Process. 5, 243 (2003).Google Scholar
Mardare, C.C., Joanni, E., Mardare, A.I., Fernandes, J.R.A., de Sá, C.P.M., and Tavares, P.B.: Effects of adhesion layer (Ti or Zr) and Pt deposition temperature on the properties of PZT thin films deposited by RF magnetron sputtering. Appl. Surf. Sci. 243, 113 (2005).Google Scholar
Vorotilov, K., Sigov, A., Seregin, D., Podgorny, Yu., Zhigalina, O., and Khmelenin, D.: Crystallization behaviour of PZT in multilayer heterostructures. Phase Transitions 86, 1152 (2013).CrossRefGoogle Scholar
Yanovskaya, M.I., Obvintseva, I.E., Solovyova, L.I., Kovsman, E.P., Vorotilov, K.A., and Vasilyev, V.A.: Alkoxy-derived ferroelectric PZT films: The effect of lead acetate dehydration techniques and lead content in the electrochemically prepared solutions on the properties of the films. Integr. Ferroelectr. 19, 193 (1998).Google Scholar
Hiboux, S. and Muralt, P.: Mixed titania-lead seed layers for PZT growth on Pt(111): A study on nucleation, texture and properties. J. Eur. Ceram. Soc. 24, 1593 (2004).Google Scholar
Sanchez, L.M., Potrepka, D.M., Fox, G.R., Takeuchi, I., Wang, K., Bendersky, L., and Polcawich, R.G.: Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators. J. Mater. Res. 28, 1920 (2013).Google Scholar
Lei, R., Ren, Y-B., Liu, X-T., Qiao, L-J., Yue, Z-X., Xie, D., and Cao, J-L.: Interface modifications of lead zirconate titanate thin films. Ferroelectrics 402, 43 (2010).Google Scholar
Kwok, K.W., Kwok, K.P., Tsang, R.C.W., Chan, H.L.W., and Choy, C.L.: Preparation and piezoelectric properties of sol–gel-derived Nb-doped PZT films for MEMS applications. Integr. Ferroelectr. 80, 155 (2006).Google Scholar
Zhong, J., Kotru, S., Han, H., Jackson, J., and Pandey, R.K.: Effect of Nb doping on highly {100}-textured PZT films grown on CSD-prepared PbTiO3 seed layers. Integr. Ferroelectr. 130, 1 (2011).Google Scholar
Xie, Z., Yue, Z., Peng, B., Zhang, J., Zhao, C., Zhang, X., Ruehl, G., and Li, L.: Large enhancement of the recoverable energy storage density and piezoelectric response in relaxor-ferroelectric capacitors by utilizing the seeding layers engineering. Appl. Phys. Lett. 106, 202901 (2015).Google Scholar
Delimova, L.A., Gushchina, E.V., Yuferev, V.S., and Grekhov, I.V.: Investigation of the polarization dependence of the transient current in polycrystalline and epitaxial Pb(Zr,Ti)O3 thin films. Phys. Solid State 56, 2451 (2014).Google Scholar
Kotova, N.M., Vorotilov, K.A., Seregin, D.S., and Sigov, A.S.: Role of precursors in the formation of lead zirconate titanate thin films. Inorg. Mater. 50, 612 (2014).Google Scholar
Delimova, L.A., Guschina, E.V., Yuferev, V.S., Grekhov, I.V., Seregin, D.S., Vorotilov, K.A., and Sigov, A.S.: Electrophysical properties of integrated ferroelectric capacitors based on sol–gel PZT. Ferroelectrics 484, 32 (2015).Google Scholar
Delimova, L.A., Guschina, E.V., Yuferev, V.S., Ratnikov, V.V., Zaiceva, N.V., Sharenkova, N.V., Seregin, D.S., Vorotilov, K.A., and Sigov, A.S.: Peculiarities of electrical characteristics of ferroelectric memory elements based on PZT-films. Russ. Phys. J. 58, 1301 (2016).Google Scholar
Scott, J.F., Melnik, B.M., Cuchiaro, J.D., Zuleeg, R., Araujo, C.A., McMillan, L.D., and Scott, M.C.: Negative differential resistivity in ferroelectric thin-film current–voltage relationships. Integr. Ferroelectr. 4, 85 (1994).CrossRefGoogle Scholar
Daniel Chen, H., Udayakumar, K.R., Li, K.K., Gaskey, C.J., and Eric cross, L.: Dielectric breakdown strength in sol–gel derived PZT thick films. Integr. Ferroelectr. 15, 89 (1997).Google Scholar
Zhu, W., Ren, W., Xin, H., Shi, P., and Wu, X.: Enhanced ferroelectric properties of highly (100) oriented Pb(Zr,Ti)O3 thick films prepared by chemical solution deposition. J. Adv. Dielectr. 3, 1350011 (2013).CrossRefGoogle Scholar
Alkoy, E.M. and Shiosaki, T.: Electrical properties and leakage current behavior of un-doped and ti-doped lead zirconate thin films synthesized by sol–gel method. Thin Solid films 516, 4002 (2008).CrossRefGoogle Scholar
Scott, J.F., Morrison, F.D., Miyake, M., Zubko, P., Lou, X., Kugler, V.M., Rios, S., Zhang, M., Tatsuta, T., Tsuji, O., and Leedham, T.J.: Recent materials characterizations of 2D and 3D thin film ferroelectric structures. J. Am. Ceram. Soc. 88, 1691 (2005).Google Scholar
Podgorny, Yu., Sigov, A., Vishnevskiy, A., and Vorotilov, K.: Simulation of negative differential resistivity in thin ferroelectric films. Ferroelectrics 465, 28 (2014).Google Scholar
Podgorny, Y., Vorotilov, K., and Sigov, A.: Negative differential conductivity in thin ferroelectric films. Appl. Phys. Lett. 105, 182904 (2014).Google Scholar
Waser, R. and Klee, M.: Theory of conduction and breakdown in perovskite thin films. Integr. Ferroelectr. 2, 23 (1992).Google Scholar
Lee, J.K., Ku, J-M., Cho, C-R., Lee, Y.K., Shin, S., and Park, Y.: Metal-organic chemical vapor deposition of Pb(Zr,Ti)O3 thin films for high-density ferroelectric random access memory. Semicond. Sci. Technol. 2, 205 (2002).Google Scholar
Park, G-S. and Chung, I-S.: Characterization of secondary phases in lead zirconate titanate film surface deposited with excess lead content. Jpn. J. Appl. Phys. 41(Part I), 1519 (2002).Google Scholar
Afanasiev, V.P., Mosina, G.N., Petrov, A.A., Pronin, I.P., Sorokin, L.M., and Tarakanov, E.A.: Specific properties of the PZT-based thin film capacitor structures with excess lead oxide. Tech. Phys. Lett. 27, 467 (2001).Google Scholar
Ogata, K., Suenaga, K., Horikoshi, K., Yoshizumi, K., Kato, H., and Mori, M.: Effect of grain size on degradation of Pt/PLZT/Pt capacitor. Ferroelectrics 225, 163 (1999).Google Scholar
Pronin, V.P., Senkevich, S.V., Kaptelov, E.Yu., and Pronin, I.P.: Anomalous losses of lead in crystallization of the perovskite phase in thin PZT films. Phys. Solid State 55, 105 (2013).CrossRefGoogle Scholar
Fujisawa, H., Shimizu, M., Horiuchi, T., Shiosaki, T., and Matsushige, K.: Investigation of the current path of Pb(Zr,Ti)O3 thin films using an atomic force microscope with simultaneous current measurement. Appl. Phys. Lett. 71, 416 (1997).CrossRefGoogle Scholar
Gushchina, E.V., Ankudinov, A.V., Delimova, L.A., Yuferev, V.S., and Grekhov, I.V.: Spreading resistance microscopy of polycrystalline and single-crystal ferroelectric films. Phys. Solid State 54, 1005 (2012).Google Scholar
Vorotilov, K.A., Yanovskaya, M.I., Turevskaya, E.P., and Sigov, A.S.: Sol–gel derived ferroelectric thin films: Avenues for control of microstructural and electric properties. J. Sol-Gel Sci. Technol. 16, 109 (1999).Google Scholar