Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T17:38:39.782Z Has data issue: false hasContentIssue false

Diffusion in a regular solid solution

Published online by Cambridge University Press:  03 March 2011

J.L. Chu
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan 30042
Sanboh Lee
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan 30042
Get access

Abstract

Diffusion in a regular solid solution was investigated. A thin plate of isotropic solid of constant surface molal fraction was considered. The regular solution is described by the parameter α. When α is positive, the attraction between unlike atoms is greater than the attraction between like atoms, and conversely. The depths of penetration and average molal fraction for a given period increase with increasing α. The separation of two curves for given α increase with increasing surface molal fraction. The diffusion coefficient is positive only if α is greater than −1/X(1 - X).

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tuck, B., Introduction to Diffusion in Semiconductors (Peter Peregrinus, Herts, England, 1974), p. 2.Google Scholar
2Prussin, S., J. Appl. Phys. 32, 1876 (1961).CrossRefGoogle Scholar
3Li, J.C.M., Metall. Trans. 9A, 1353 (1979).Google Scholar
4Larché, F. C. and Cahn, J. W., Acta Metall. 30, 1835 (1982).CrossRefGoogle Scholar
5Larché, F. C. and Cahn, J. W., J. Res. Natl. Bur. Stand. 89, 467 (1984).CrossRefGoogle Scholar
6Lee, S. and Li, J.C.M., J. Appl. Phys. 52, 1336 (1981).CrossRefGoogle Scholar
7Lee, S. and Ouyang, H., J. Thermal Stresses 10, 269 (1987).CrossRefGoogle Scholar
8Chu, J. L. and Lee, S., Int. J. Eng. Sci. 28, 1085 (1990).CrossRefGoogle Scholar
9Chu, J. L. and Lee, S., J. Appl. Phys. 73, 2239 (1993).CrossRefGoogle Scholar
10Chu, J. L. and Lee, S., J. Appl. Phys. 73, 3211 (1993).CrossRefGoogle Scholar
11Chu, J. L. and Lee, S., J. Appl. Phys. 75(6), 2823 (1994).CrossRefGoogle Scholar
12Crank, J., The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, 1975), Chap. 7.Google Scholar
13Gaskell, D. R., Introduction to Metallurgical Thermodynamics, 2nd ed. (Hemisphere Publishing Corporation, New York, 1981), Chap. 11.Google Scholar
14Margules, M., Sitzungsberichte. Akad. Wiss. Vienna 104, 1243 (1895).Google Scholar
15Hildebrand, J. H., J. Am. Chem. Soc. 51, 66 (1929).CrossRefGoogle Scholar
16Hildebrand, J. H. and Sharma, J. N., J. Am. Chem. Soc. 51, 462 (1929).CrossRefGoogle Scholar
17Einstein, A., Ann. Phys. 17, 49 (1905).Google Scholar
18Darken, L. S., Trans. Am. Inst. Min. Metall. Pet. Eng. 175, 184 (1948).Google Scholar
19Hillert, M., Acta Metall. 9, 525 (1961).CrossRefGoogle Scholar
20Swalin, R. A., Thermodynamics of Solids, 2nd ed. (Wiley, New York, 1972), p. 177.Google Scholar