Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:44:29.412Z Has data issue: false hasContentIssue false

A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters

Published online by Cambridge University Press:  31 January 2011

B. R. Elliott
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
J. J. Host
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
V. P. Dravid*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
M. H. Teng
Affiliation:
Department of Geology, National Taiwan University, Taipei, Taiwan, Republic of China
J-H. Hwang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

New and modified mechanisms are proposed to account for detailed observations of carbon encapsulation of Fe, Ni, and Co nanocrystals. The mechanisms are based on aerosol and gas phase chemistry and on the catalytic effects of transition metals. Two parameters are found to qualitatively dominate production: the local-path carbon-to-metal ratio (LCM) and the global carbon-to-metal ratio (GCM). LCM's select which mechanisms are active along each pathway within the reactor. The GCM places bounds upon and determines the weighting between different LCM's and thus determines the distribution of different nanoscale products within the collected, macroscopic product. A two part processing parameter → mechanism → product map links the components. The generality of the model is discussed throughout with reference to related processes and the encapsulation of other materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chai, Y., Guo, T., Jin, C. M., Haufler, R. E., Chibante, L. P. F., Fure, J., Wang, L. H., Alford, J. M., and Smalley, R. E., J. Phys. Chem. 95, 75647568 (1991).CrossRefGoogle Scholar
2.Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, Pt. 2, L280–L282 (1993).CrossRefGoogle Scholar
3.Seraphin, S. and Zhou, D., Appl. Phys. Lett 64, 2087 (1994).Google Scholar
4.Baker, R. T. K., Carbon 27, 315323 (1989).CrossRefGoogle Scholar
5.Rodriguez, N. M., J. Mater. Res. 8, 32333250 (1993).CrossRefGoogle Scholar
6.Amelinckx, S., Bernaerts, D., Zhang, X. B., van Tendeloo, G., and Van Landuyt, J., Science 267, 13341338 (1995).CrossRefGoogle Scholar
7.Saito, Y., Okuda, M., Fujimoto, N., Yoshikawa, T., Tomita, M., and Hatashi, T., Jpn. J. Appl. Phys. 33, Pt. 2, L526–L529 (1994).Google Scholar
8.Seraphin, S., J. Electrochem. Soc. 142, 290297 (1995).CrossRefGoogle Scholar
9.Majetich, S. A., Scott, J. H., Brunsman, E. M., and McHenry, M. E., in Science and Technology of Fullerene Materials, edited by Bernier, P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R. M., and Mintmire, J. W. (Mater. Res. Soc. Symp. Proc. 359, Pittsburgh, PA, 1995), pp. 2934.Google Scholar
10.Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J-H., Mason, T. O., Weertman, J. R., Johnson, D. L., and Dravid, V. P., J. Mater. Res. 12, 12681273 (1997).CrossRefGoogle Scholar
11.Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J-H., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature 374, 602 (1995).CrossRefGoogle Scholar
12.Teng, M. H., Host, J. J., Hwang, J-H., Elliott, B. R., Weertman, J. R., Mason, T. O., Dravid, V. P., and Johnson, D. L., J. Mater. Res. 10, 233236 (1995).Google Scholar
13.Saito, Y., in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, M. and Ruoff, R. S. (The Electrochemical Society, Pennington, NJ, 1994), pp. 14191432.Google Scholar
14.Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., Mason, T. O., Weertman, J. R., and Hwang, J-H., in United States Patent Office, Vol. 5472749 (Northwestern University, Evanston, IL, 1995).Google Scholar
15.Zhou, D., Wang, S., and Seraphin, S., in Proceedings 1994 Annual Meeting, Microscopy Society of America, New Orleans, LA, pp. 772773.CrossRefGoogle Scholar
16.Hwang, J-H., Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., and Mason, T. O., J. Mater. Res. 12, 10761082 (1997).CrossRefGoogle Scholar
17.Granquist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
18.Flagan, R. C. and Lunden, M. M., Mater. Sci. Eng. A: Struct. Mater.: Prop. Microstruct. Process. A204, 113124 (1995).CrossRefGoogle Scholar
19.Nguyen, H. V. and Flagan, R. C., Langmuir 7, 18071814 (1991).Google Scholar
20.Schumann, T. E. W. and Roy, Q. J., Metero. Soc. 66, 195 (1940).CrossRefGoogle Scholar
21.Swift, D. L. and Friedlander, S. K., J. Colloid Sci. 19, 621 (1964).CrossRefGoogle Scholar
22.Zhou, D., Seraphin, S., and Withers, J. C., Chem. Phys. Lett. 234, 233 (1995).CrossRefGoogle Scholar
23.Seraphin, S., Zhou, D., and Jiao, J., unpublished.Google Scholar
24.Subramoney, S., Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., Dyer, M. J., and Parvin, K., Carbon 32, 507513 (1994).CrossRefGoogle Scholar
25.Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346348 (1993).CrossRefGoogle Scholar
26.Liu, M. and Cowley, J. M., Carbon 33, 749756 (1995).CrossRefGoogle Scholar
27.Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R., Nature 362, 503 (1993).CrossRefGoogle Scholar
28.Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R., Appl. Phys. Lett. 63, 2073 (1993).Google Scholar
29.Bandow, S. and Saito, Y., Jpn. J. Appl. Phys. 32, Pt. 2, L1677–L1680 (1993).Google Scholar
30.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamauro, S., Wakoh, K., Sumiyama, K., Kasuya, A., and Nishina, Y., J. Appl. Phys. 75, 134137 (1994).CrossRefGoogle Scholar
31.Brunsman, E. M., Anna, S., Majetich, S. A., and McHenry, M. E., in Science and Technology of Fullerene Materials, edited by Bernier, P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R. M., and Mintmire, J. W. (Mater. Res. Soc. Symp. Proc. 359, Pittsburgh, PA, 1995), pp. 3540.Google Scholar
32.McHenry, M. E., Majetich, S. A., and Kirkpatrick, E. M., Mater. Sci. Eng. A A204, 1924 (1995).CrossRefGoogle Scholar
33.Lin, X., Wang, X. K., Dravid, V. P., Chang, R. P. H., and Ketterson, J. B., Appl. Phys. Lett. 64, 181183 (1994).Google Scholar
34.Wang, Y., J. Am. Chem. Soc. 116, 397398 (1994).Google Scholar
35.Ajayan, P. M., Colliex, C., Lambert, J. M., Bernier, P., Barbedette, L., Tence, M., and Stephan, O., Phys. Rev. Lett. 72, 17221725 (1994).CrossRefGoogle Scholar
36.Saito, Y., Yoshikawa, T., Bandow, S., Tomita, M., and Hayashi, T., Phys. Rev. B 48, 1907 (1993).CrossRefGoogle Scholar
37.Subramoney, S., Kavelaar, P. V., Ruoff, R. S., and Lorents, D. C., in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, M. and Ruoff, R. S. (The Electrochemical Society, Pennington, NJ, 1994), p. 1498.Google Scholar
38.Heidenreich, R. D., Hess, W. M., and Ban, L. L., J. Appl. Cryst. 1, 119 (1968).Google Scholar
39.Haase, O., Koch, R., Borbonus, M., and Rieder, K. H., in Proceedings of the 6th International Conference on Scanning Tunneling Microscopy-STM ‘91, Interlaken, Switzerland, 1991 (Ultramicroscopy), pp. 541545.Google Scholar
40.Kejrer, V. J. and Leidheiser, H., J. Phys. Colloid. Chem. 58, 550 (1954).Google Scholar
41.Itoh, T. and Sinclair, R., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), pp. 3136.Google Scholar
42.Baker, R. T. K., Barber, M. A., Harris, P. S., Feates, F. S., and Waite, R. J., J. Catalysis 26, 51 (1972).CrossRefGoogle Scholar
43.Jenkins, G. M. and Kawamura, K., Polymeric Carbons (Cambridge University Press, 1976).Google Scholar
44.Terry, R., Baker, K., and Rodriguez, N. M., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), pp. 251256.Google Scholar
45.Williams, M. M. R. and Loyalka, S. K., Aerosol Science: Theory and Practice (Pergamon Press, Oxford, 1991).Google Scholar
46.Fuks, N. A., The Mechanics of Aerosols (Dover, New York, 1964).Google Scholar
47.Ata, M., Kijima, Y., Imoto, H., Matsuzawa, N., and Takahashi, N., Jpn. J. Appl. Phys., Part 1: Regular Papers & Short Notes & Review Papers 33, 40324038 (1994).Google Scholar
48.Ata, M., Matsuzawa, N., Kijima, Y., Seto, J. E., and Imoto, H., Jpn. J. Appl. Phys. Part 1: Regular Papers & Short Notes & Review Papers 32, 35493555 (1993).CrossRefGoogle Scholar
49.Zhou, D., Wang, S., Seraphin, S., and Withers, J. C., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), pp. 337342.Google Scholar
50.Zhou, D., Seraphin, S., and Wang, S., in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D. M., Pouch, J. J., and Achiba, Y. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), pp. 257262.Google Scholar
51.Bethune, D. S., Klang, C. H., DeVries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605606 (1993).Google Scholar
52.Majetich, S. A., Artman, J. O., McHenry, M. E., Nuhfer, N. T., and Staley, S. W., Phys. Rev. B 48, 1684516847 (1993).CrossRefGoogle Scholar
53.Ruoff, R. S. and Subramoney, S., Nature 366, 637 (1993).Google Scholar