Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T13:50:11.313Z Has data issue: false hasContentIssue false

Damage Behavior of 200-nm Thin Copper Films Under Cyclic Loading

Published online by Cambridge University Press:  03 March 2011

G.P. Zhang
Affiliation:
Max-Planck-Institut für Metallforschung, D-70569 Stuttgart, Germany; and Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
C.A. Volkert
Affiliation:
Institut für Materialforschung II, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
R. Schwaiger
Affiliation:
Institut für Materialforschung II, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
E. Arzt
Affiliation:
Max-Planck-Institut für Metallforschung, D-70569 Stuttgart, Germany
O. Kraft
Affiliation:
Institut für Materialforschung II, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
Get access

Abstract

Fatigue damage in 200-nm-thick Cu films was investigated and compared with the damage in thicker Cu films. The fatigued 200-nm-thick Cu films exhibited only a few, small extrusions and extensive cracking along twin and grain boundaries, whereas the thicker films showed many extrusions/intrusions and cracks lying along the extrusions rather than along the boundaries. This change in fatigue damage behavior with film thickness is attributed to the inhibition of dislocation mobility and the limited availability and activation of dislocation sources on the small length scale. It is argued that the decrease in film thickness and grain size inhibits the localized accumulation of plastic strain within grains, such as at extrusions/intrusions and in extended dislocation structures, and promotes the formation of damage such as cracks at twin and grain boundaries during fatigue. This effect is suggested as the likely cause for the increase in fatigue life with decreasing specimen dimensions.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nix, W.D.: Mechanical properties of thin films. Metall. Trans. 20A, 2217 (1989).Google Scholar
2Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
3Hong, S. and Weil, R.: Low cycle fatigue of thin copper foils. Thin Solid Films 283, 175 (1996).Google Scholar
4Read, D.T.: Fatigue of microlithographically-patterned free-standing aluminum thin films under axial stresses. Int. J. Fatigue 20, 203 (1998).Google Scholar
5Schwaiger, R. and Kraft, O.: High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scripta Mater. 41, 823 (1999).CrossRefGoogle Scholar
6Kraft, O., Schwaiger, R. and Wellner, P.: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng. A 319, 919 (2001).CrossRefGoogle Scholar
7Schwaiger, R. and Kraft, O.: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51, 195 (2003).Google Scholar
8Schwaiger, R., Dehm, G. and Kraft, O.: Cyclic deformation of polycrystalline Cu films. Philos. Mag. A 83, 693 (2003).CrossRefGoogle Scholar
9Mönig, R., Keller, R.R and Volkert, C.A.: Thermal fatigue testing of thin metal films. Rev. Sci. Instrum. 75, 4997 (2004).CrossRefGoogle Scholar
10Zhang, G.P., Schwaiger, R., Volkert, C.A. and Kraft, O.: Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films. Philos. Mag. Lett. 83, 477 (2003).Google Scholar
11Hommel, M., Kraft, O. and Arzt, E.: Deformation behavior of thin copper films on deformable substrates. J. Mater. Res. 14, 2373 (1999).CrossRefGoogle Scholar
12Spolenak, R.: Private communication (2004).Google Scholar
13Strecker, A., Bader, U., Kelsch, M., Salzberger, U., Sycha, M., Gao, M., Richter, G. and van Benthem, K.: Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning. Z. Metall. 94, 290 (2003).Google Scholar
14Chan, K.S., Hack, J.E. and Leverant, G.R.: Fatigue crack growth in MAR-M200 single crystals. Metall. Trans. 18A, 581 (1987).Google Scholar
15Aswath, P.B.: Effect of orientation on crystallographic cracking in notched nickel-base superalloy single crystal subjected to far-field cyclic compression. Metall. Trans. 25A, 287 (1994).CrossRefGoogle Scholar
16Laird, C., Charsley, P. and Mughrabi, H.: Low-energy dislocation structures produced by cyclic deformation. Mater. Sci. Eng. 81, 433 (1986).CrossRefGoogle Scholar
17Thiele, E., Holste, C. and Klemm, R.: Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel. Z. Metall. 93, 730 (2002).Google Scholar
18Kraft, O., Wellner, P., Hommel, M., Schwaiger, R. and Arzt, E.: Fatigue behavior of polycrystalline thin copper films. Z. Metall. 93, 392 (2002).Google Scholar
19Vinogradov, A. and Hashimoto, S.: Fatigue of severely deformed metals. Adv. Eng. Mater. 5, 351 (2003).Google Scholar
20Blanckenhagen, B., Gumbsch, P. and Arzt, E.: Dislocation sources and the flow stress of polycrystalline thin metal films. Philos. Mag. Lett. 83, 1 (2003).Google Scholar
21Nix, W.D.: Yielding and strain hardening of thin metal films on substrates. Scripta Mater. 39, 545 (1998).CrossRefGoogle Scholar
22Essmann, U., Gösele, U. and Mughrabi, H.: A model of extrusions and intrusions in fatigued metals. Philos. Mag. A 44, 405 (1981).Google Scholar
23Ma, B.T. and Laird, C.: Overview of fatigue behavior in copper single crystals - I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude. Mater. Sci. Eng. 37, 325 (1989).Google Scholar
24Mughrabi, H., Wang, R., Differt, K. and Essmann, U. Fatigue crack initiation by cyclic slip irreversibilities in high cycle fatigue. In Quantitative Measurement of Physical Damage, edited by Lankford, J., Davidson, D.L., Morris, W.L., and Wei, R.P. (ASTM STP, 811, Philadelphia, PA, 1983) p. 5.Google Scholar
25Kim, W.H. and Laird, C.: Crack nucleation and stage I propagation in high strain fatigue—II. Mechanism. Acta Metall. 26, 789 (1978).Google Scholar
26Liu, W., Bayerlein, M., Mughrabi, H., Day, A. and Quested, P.N.: Crystallographic features of intergranular crack initiation in fatigued copper polycrystals. Acta Metall. Mater. 40, 1763 (1992).CrossRefGoogle Scholar
27Heinz, A. and Neumann, P.: Crack initiation during high cycle fatigue of an austenitic steel. Acta Metall. Mater. 38, 1933 (1990).Google Scholar
28Keller, R.M., Baker, S.P. and Arzt, E.: Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size and passivation. J. Mater. Res. 13, 1307 (1998).CrossRefGoogle Scholar
29Basinski, S.J., Basinski, Z.S. and Howie, A.: Early stages of fatigue in copper single crystals. Philos. Mag. 19, 899 (1969).CrossRefGoogle Scholar
30Essmann, U. and Mughrabi, H.: Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos. Mag. A 40, 731 (1979).Google Scholar
31Tang, M.J., Xu, G.S., Cai, W. and Bulatov, V. In Thin Films– Stresses and Mechanical Properties X , edited by Corcoran, S.G., Joo, Y.C., Moody, N.R., and Suo, Z. (Mater. Res. Soc. Symp. Proc. 795, Warrendale, PA, 2004) p. U2.4.1.Google Scholar
32Mughrabi, H. On the grain-size dependence of metal fatigue: Outlook on the fatigue of ultrafine-grained metals, in Investigations and Applications of Severe Plastic Deformation, edited by Lowe, T.C. and Valiev, R.Z. (NATO Science Series, v. 3/80, Kluwer Publishers, Norwell, MA, 2000) p. 241.Google Scholar
33Neumann, P. and Toennessen, A. In Strength of Metals and Alloys, edited by Kettunen, P.O., Lepistoe, T.K., and Lehtonen, M.E. (Pergamon Press, Oxford, U.K., 1988) Vol. 1, p. 743.Google Scholar
34Balk, T.J., Dehm, G. and Arzt, E.: Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films. Acta Mater. 51, 4471 (2003).CrossRefGoogle Scholar
35Gao, H., Zhang, L., Nix, W.D., Thompson, C.V. and Arzt, E.: Crack-like grain-boundary diffusion wedges in thin metal films. Acta Mater. 47, 2865 (1999).Google Scholar
36Zhang, G.P., Moenig, R., Park, Y.B., Arzt, E. and Volkert, C.A.: Transmission electron microscopy investigation of thermomechanical fatigue damage in Cu films (to be published).Google Scholar
37McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhuyaev, A.P. and Mukherjee, A.K.: Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684 (1999).Google Scholar
38Van Swygenhoven, H. and Derlet, P.M.: Grain-boundary sliding in nanocrystalline fcc metals. Phy. Rev. B 64, 224105 (2001).Google Scholar
39Van Swygenhoven, H.: Grain boundaries and dislocations. Science 296, 66 (2002).CrossRefGoogle ScholarPubMed