Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T02:54:54.698Z Has data issue: false hasContentIssue false

Controlled partial melting during isobaric and isothermal processing of dipcoated Bi-2212/Ag tapes

Published online by Cambridge University Press:  31 January 2011

A. L. Crossley
Affiliation:
Centre for High Temperature Superconductivity, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
J. L. MacManus-Driscoll
Affiliation:
Centre for High Temperature Superconductivity, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
Get access

Abstract

A detailed study has been made of the control and optimization of partial melting of dipcoated Bi2Sr2Ca1Cu2O8+δAg0.1 (Bi-2212) tapes using reduced oxygen partial pressures. A coulometric titration technique has been employed to vary the oxygen partial pressure in a region of the phase diagram corresponding to binary melting, and the amount of partial melting has been quantified. Using this information, tapes have been processed using both isothermal and isobaric techniques. An optimum processing route was determined which combined isothermal and isobaric processes. Highly aligned material at the point of optimum melting was obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Feng, Y., Hautanen, K. E., High, Y. E., Larbelestier, D. C., Ray, R., Hellstrom, E. E., and Babcock, S. E., Physica C 192, 293305 (1992).CrossRefGoogle Scholar
2.MacManus-Driscoll, J. L., Bravman, J. C., Savoy, R. J., Gorman, G., and Beyers, R. B., J. Am. Ceram. Soc. 77 (9), 2305 (1994).CrossRefGoogle Scholar
3.MacManus-Driscoll, J. L., Wang, Pin-Chin, and Bravman, J. C., Appl. Phys. Lett. 65 (22), 2872 (1994).CrossRefGoogle Scholar
4.Hellstrom, E. E., Supercond. Sci. Technol. 8, 317 (1995).CrossRefGoogle Scholar
5.Margulies, L., Dennis, K. W., Kramer, M. J., and McCallum, R. W., Physica C 266, 6274 (1996).CrossRefGoogle Scholar
6.Ray, R. D. and Hellstrom, E. E., Supercond. Sci. Technol. 8, 430 (1995).Google Scholar
7.Hallstedt, B., Risold, D., Muller, R., and Gauckler, L. J., Advances in Superconductivity, Conf. Proc. 7th Int. Symp. on Superconductivity, edited by Yamafuji, K. and Morishita, T. (Springer-Verlag, 1995), Vol. 1, p. 363.Google Scholar
8.Zhang, W. and Hellstrom, E. E., Supercond. Sci. Technol. 8, 430438 (1995).CrossRefGoogle Scholar
9.Angadi, M. A., Caplin, A. D., Laverty, J. R., and Shen, Z. X., Physica C 177, 267 (1991).CrossRefGoogle Scholar
10.Holesinger, T. G., Johnson, J. M., Coulter, J. Y., Safar, H., Phillips, D. S., Bingert, J. F., Bingham, B. L., Maley, M. P., Smith, J. L., and Peterson, D. E., Physica C 253, 182190 (1995).CrossRefGoogle Scholar
11.Funahashi, R., Matsubara, I., Ogura, T., Ueno, K., and Ishikawa, H., Physica C 273, 337341 (1997).CrossRefGoogle Scholar
12.Holesinger, T. G., Johnson, J. M., Coulter, J. Y., Willis, J. O., and Peterson, D. E., Physica C 243, 93102 (1995).CrossRefGoogle Scholar