Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:34:06.010Z Has data issue: false hasContentIssue false

Competition between strain and interface energy during epitaxial grain growth in Ag films on Ni(001)

Published online by Cambridge University Press:  03 March 2011

J.A. Floro
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
C.V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
R. Carel
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
P.D. Bristowe
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

Epitaxial Grain Growth (EGG) is an orientation-selective process that can occur in polycrystalline thin films on single crystal substrates. EGG is driven by minimization of crystallographically anisotropic free energies. One common driving force for EGG is the reduction of the film/substrate interfacial energy. We have carried out experiments on polycrystalline Ag films on Ni(001) substrates. The orientation dependence of the Ag/Ni interfacial energy has been previously calculated using the embedded atom method. Under some conditions, EGG experiments lead to the (111) orientations calculated to be interface- and surface-energy-minimizing. However, when Ag films are deposited on Ni(001) at low temperature, EGG experiments consistently find that (111) oriented grains are consumed by grains with (001) orientations predicted to have much higher interface and surface energy. The large elastic anisotropy of Ag can account for this discrepancy. Strain energy minimization favors growth of (001) grains and can supersede minimization of interfacial energy if sufficient strain is present and if the film is initially unable to relieve the strain by plastic deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Thompson, C. V., J. Appl. Phys. 58, 763 (1985).CrossRefGoogle Scholar
2Thompson, C. V., Acta Metall. 36, 2929 (1988).CrossRefGoogle Scholar
3Thompson, C. V., Annu. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
4Palmer, J. E., Thompson, C. V., and Smith, H. I., J. Appl. Phys. 62, 2492 (1987).CrossRefGoogle Scholar
5Kim, H. J. and Thompson, C. V., J. Appl. Phys. 67, 757 (1990).CrossRefGoogle Scholar
6Wong, C. C., Smith, H. I., and Thompson, C. V., Appl. Phys. Lett. 48, 335 (1986).CrossRefGoogle Scholar
7Thompson, C. V. and Smith, H. I., Appl. Phys. Lett. 44, 603 (1984).CrossRefGoogle Scholar
8Thompson, C. V., Floro, J. A., and Smith, H. I., J. Appl. Phys. 67, 4099 (1990).CrossRefGoogle Scholar
9Floro, J. A. and Thompson, C. V., in Thin Film Structures and Phase Stability, edited by Clemens, B.M. and Johnson, W. L. (Mater. Res. Soc. Symp. Proc. 187, Pittsburgh, PA, 1990), pp. 273278.Google Scholar
10Floro, J. A. and Thompson, C. V., Acta Metall. Mater. 41, 1137 (1993).CrossRefGoogle Scholar
11Gao, Y., Dregia, S. A., and Shewmon, P. G., Acta Metall. 37, 1627 (1989).CrossRefGoogle Scholar
12Gao, Y., Dregia, S. A., and Shewmon, P. G., Acta Metall. 37, 3165 (1989).CrossRefGoogle Scholar
13Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
14Hillert, M., Acta Metall. 13, 227 (1965).CrossRefGoogle Scholar
15Schultz, L. G., J. Appl. Phys. 20, 1030 (1949).CrossRefGoogle Scholar
16Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 295.Google Scholar
17Bassett, C. S. and Massalski, T. B., Structure of Metals, 3rd ed. (McGraw-Hill, New York, 1966).Google Scholar
18Pashley, D. W. and Stowell, M. J., Philos. Mag. 8, 1605 (1963).CrossRefGoogle Scholar
19Allpress, J. G. and Sanders, J. V., Philos. Mag. 14, 937 (1966).CrossRefGoogle Scholar
20Thompson, C. V., Frost, H. J., and Spaepen, F., Acta Metall. 35, 887 (1987).CrossRefGoogle Scholar
21Srolovitz, D. J., Grest, G. S., and Anderson, M. P., Acta Metall. 32, 2233 (1985).CrossRefGoogle Scholar
22Hirth, J. P. and Lothe, J., Theory of Dislocations (John Wiley, New York, 1982).Google Scholar
23Nix, W. D., Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
24“Thermal Expansion—Metallic Elements and Alloys,” in Thermophy steal Properties of Matter (IFI/Plenum, New York), Vol. 12.Google Scholar
25Handbook of Precious Metals, edited by Savitskii, E. M. (Hemisphere Publishing Corp., New York), p. 127.Google Scholar
26Metals Handbook, 10th ed. (American Society for Metals, Metals Park, OH), Vol. 2, pp. 1143, 1156.Google Scholar
27Venkatraman, R. and Bravman, J. C., J. Mater. Res. 7, 2040 (1992).CrossRefGoogle Scholar
28Freund, L. B., J. Appl. Mech. 54, 553 (1987).CrossRefGoogle Scholar
29Thompson, C. V., J. Mater. Res. 8, 237 (1993).CrossRefGoogle Scholar
30Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
31Sanchez, J. E. Jr. and Arzt, E., Scripta Metall. Mater. 27, 285 (1992).CrossRefGoogle Scholar
32Balluffl, R., private communication.Google Scholar
33Matyi, R. J., Lee, J. W., and Schaake, H. F., J. Elec. Mater. 17, 87 (1988).CrossRefGoogle Scholar
34Beanland, R., Philos. Mag. A 67, 585 (1993).CrossRefGoogle Scholar
35Du, R. and Flynn, C. P., J. Phys. Condens. Matter 2, 1335 (1990).CrossRefGoogle Scholar
36Jesser, W. A., Phys. Status Solidi A 20, 63 (1973).CrossRefGoogle Scholar
37Dodson, B., Myers, D. R., Datye, A. K., Kaushik, V. S., Kendall, D. L., and Martinez-Tovar, B., Phys. Rev. Lett. 61, 2681 (1988).CrossRefGoogle Scholar
38Mader, S., Feder, R., and Chaudhari, P., Thin Solid Films 14, 63 (1972).CrossRefGoogle Scholar
39Hornstra, J., Physica 26, 198 (1960).CrossRefGoogle Scholar
40Floro, J. A., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (1993).Google Scholar