Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T01:20:09.894Z Has data issue: false hasContentIssue false

Characterization of the intrinsic strength between epoxy and silica using a multiscale approach

Published online by Cambridge University Press:  24 April 2012

Denvid Lau
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Oral Büyüköztürk
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Markus J. Buehler*
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Organic–inorganic interfaces exist in many natural or synthetic materials, such as mineral–protein interfaces found in bone and epoxy–silica interfaces found in concrete construction. Here, we report a model to predict the intrinsic strength between organic and inorganic materials, based on a molecular dynamics simulation approach combined with the metadynamics method, used to reconstruct the free energy surface between attached and detached states of the bonded system and scaled up to incorporate it into a continuum model. We apply this technique to model an epoxy–silica system that primarily features nonbonded and nondirectional van der Waals and Coulombic chemical interactions. The intrinsic strength between epoxy and silica derived from the molecular level is used to predict the structural behavior of epoxy–silica interface at the macroscopic length scale by invoking a finite element approach using a cohesive zone model which shows a good agreement with existing experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Au, C. and Büyüköztürk, O.: Peel and shear fracture characterization of debonding in FRP plated concrete affected by moisture. J. Compos. Constr. 10(1), 3547 (2006).CrossRefGoogle Scholar
2.Lau, D. and Büyüköztürk, O.: Fracture characterization of concrete/epoxy interface affected by moisture. Mech. Mater. 42(12), 1031 (2010).CrossRefGoogle Scholar
3.Sharratt, B.M., Wang, L.C., and Dauskardt, R.H.: Anomalous debonding behavior of a polymer/inorganic interface. Acta. Mater. 55, 3601 (2007).CrossRefGoogle Scholar
4.Tuakta, C. and Buyukozturk, O.: Deterioration of FRP/concrete bond system under variable moisture conditions quantified by fracture mechanics. Composites Part B 42, 145 (2011).CrossRefGoogle Scholar
5.Büyüköztürk, O., Buehler, M.J., Lau, D., and Tuakta, C.: Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface. Int. J. Solids Struct. 48(14–15), 2131 (2011).CrossRefGoogle Scholar
6.Buehler, M.J.: Atomistic Modeling of Materials Failure (Springer, New York, 2008).CrossRefGoogle Scholar
7.Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I., and Steinberg, G.S.: Native AI and Si formation. Nature 375, 544 (1995).CrossRefGoogle Scholar
8.Laio, A. and Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 99(20), 12562 (2002).CrossRefGoogle ScholarPubMed
9.Laio, A. and Gervasio, F.L.: Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(12), 126601 (2008).CrossRefGoogle Scholar
10.Keten, S. and Buehler, M.J.: Asymptotic strength limit of hydrogen-bond assemblies in protein at vanishing pulling rates. Phys. Rev. Lett. 100(19), 198301 (2008).CrossRefGoogle ScholarPubMed
11.Rappe, A.K. and Goddard, W.A.I.: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8), 3358 (1991).CrossRefGoogle Scholar
12.Maple, J.R., Dinur, U., and Hagler, A.T.: Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Prog. Natl. Acad. Sci. U.S.A. 85, 5350 (1988).CrossRefGoogle ScholarPubMed
13.Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., and Hagler, A.T.: Structure and energetics of ligand binding to proteins: Escherichia colidihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. Struct. Funct. Genet. 4, 47 (1988).CrossRefGoogle ScholarPubMed
14.Ritschla, F., Faitb, M., Fiedlera, K., JKohlerc, J.E.H., Kubiasb, B., and Meisela, M.: An extension of the consistent valence force field (CVFF) with the aim to simulate the structures of vanadium phosphorus oxides and the adsorption of n-butane and of 1-butene on their crystal planes. ZAAC Zeitschrift für anorganische und allgemeine Chemie 628(6), 1385 (2002).Google Scholar
15.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
16.Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R.A., and Parrinello, M.: PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180(10), 19611972 (2009).CrossRefGoogle Scholar
17.Ackbarow, T., Chen, X., Keten, S., and Buehler, M.J.: Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains. Proc. Natl. Acad. Sci. U.S.A. 104(42), 1641016415 (2007).CrossRefGoogle ScholarPubMed
18.Sotomayor, M. and Schulten, K.: Single-molecule experiments in vitro and in silico. Science 316(5828), 1144 (2007).CrossRefGoogle ScholarPubMed
19.Marko, J.F. and Siggia, E.D.: Stretching DNA. Macromolecules 28(26), 8759 (1995).CrossRefGoogle Scholar
20.Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315), 1109 (1997).CrossRefGoogle ScholarPubMed
21.Oberhauser, A.F., Marszalek, P.E., Erickson, H.P., and Fernandez, J.M.: The molecular elasticity of the extracellular matrix protein tenascin. Nature 393(181), 181 (1998).CrossRefGoogle ScholarPubMed
22.Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E., and Fernandez, J.M.: The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379 (1999).CrossRefGoogle Scholar
23.Rief, M., Fernandez, J.M., and Gaub, H.E.: Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 84(21), 4764 (1998).CrossRefGoogle Scholar
24.Bustamante, C., Smith, S.B., Liphardt, J., and Smith, D.: Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279 (2000).CrossRefGoogle ScholarPubMed
25.Dugdale, D.S.: Yielding in steel sheets containing slits. J. Mech. Phys. Solids 8, 100104 (1960).CrossRefGoogle Scholar
26.Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. In Advances in Applied Mechanics, Dryden, H.L. and Von Karman, T., eds, Academic Press, New York, NY, 1962; pp. 55129.Google Scholar
27.Elices, M., Guinea, G.V., Gomez, J., and Planas, J.: The cohesive zone model: Advantages, limitations and challenges. Eng. Fract. Mech. 69(2), 137163 (2002).CrossRefGoogle Scholar
28.Frigione, M., Aiello, M.A., and Naddeo, C.: Water effect on the bond strength of concrete/concrete adhesive joints. Constr. Build. Mater. 20, 957970 (2006).CrossRefGoogle Scholar
29.Karbhari, V.M. and Engineer, M.: Effects of environmental exposure on the external strengthening of concrete with composites-short term bond durability. J. Reinf. Plast. Compos. 15, 11941216 (1996).CrossRefGoogle Scholar
30.Ouyang, Z. and Guoqiang, L.: Nonlinear interface shear fracture of end notched flexure specimens. Int. J. Solids Struct. 46, 26592668 (2009).CrossRefGoogle Scholar
31.Qiao, P. and Xu, Y.: Effects of freeze-thaw and dry-wet conditionings on the mode-I fracture of FRP-concrete interface bonds. In Engineering, Construction and Operations in Challenging Environments: Proceedings of Ninth Biennial Conference of the Aerospace Division, edited by Malla, R.B. and Maji, A. (ASCE Conf. Proc., League City/Houston, TX, 2004), pp. 601608.CrossRefGoogle Scholar
32.Yarovsky, I. and Evans, E.: Computer simulation of structure and properties of crosslinked polymers application to epoxy resins. Polymer 43, 963 (2002).CrossRefGoogle Scholar
33.May, C.A.: Epoxy Resins: Chemistry and Technology, 2nd ed. (Marcel Dekker Inc, New York, 1987).Google Scholar
34.Diehl, T.: On using a penalty-based cohesive-zone finite element approach: Part II – Inelastic peeling of an epoxy-bonded aluminum strip. Int. J. Adhes. Adhes. 28(4–5), 256 (2008).CrossRefGoogle Scholar
Supplementary material: File

Lau et al. supplementary material

Supplementary text

Download Lau et al. supplementary material(File)
File 4.5 KB