Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T08:31:09.641Z Has data issue: false hasContentIssue false

Antimony-doped tin oxide nanoparticles for conductive polymer nanocomposites

Published online by Cambridge University Press:  31 January 2011

W.E. Kleinjan
Affiliation:
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
J.C.M. Brokken-Zijp*
Affiliation:
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
R. van de Belt
Affiliation:
Kriya Materials B.V., Geleen, The Netherlands
Z. Chen
Affiliation:
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
G. de With
Affiliation:
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanoparticles of antimony-doped tin oxide (ATO) were characterized for 0–33.3% Sb doping, both in aqueous dispersion and as dried powder. Antimony is incorporated in the cassiterite SnO2 structure of the ATO nanoparticles (d ≈ 7 nm) up to the highest doping levels, mainly as SbV, but with increasing Sb doping the SbIII content increases. We found adsorption of NH3 at the particle surface and evidence for the incorporation of nitrogen in the crystal lattice of the particles. The total nitrogen content increases with increasing Sb doping of the particles. Compact powder conductivity measurements show an increase in conductivity of ATO powder up to 13% Sb and a small decrease for higher Sb contents. Furthermore, we show that these particles can be used to prepare highly transparent conductive cross-linked ATO/acrylate nanocomposites with a continuous fractal particle network through the polymer matrix and a very low percolation threshold (ϕc ≈ 0.3 vol%).

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chopra, K.L., Major, S., Pandya, D.K.: Transparent conductors—A status review. Thin Solid Films 102, 1 1983Google Scholar
2Goebbert, C., Bisht, H., Al-Dahoudi, N., Nonninger, R., Aegerter, M.A., Schmidt, H.: Wet chemical deposition of crystalline, redispersable ATO and ITO nanoparticles. J. Sol.-Gel Sci. Technol. 19, 201 2000CrossRefGoogle Scholar
3Terrier, C., Chatelon, J.P., Berjoan, R., Roger, J.A.: Sb-doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique. Thin Solid Films 263, 37 1995Google Scholar
4van Bommel, M.J., Groen, W.A., Van Hal, H.A.M., Keur, W.C., Bernards, T.N.M.: The electrical and optical properties of thin layers of nano-sized antimony doped tinoxide particles. J. Mater. Sci. 34, 4803 1999CrossRefGoogle Scholar
5Wang, Y.C., Anderson, C.: Formation of thin transparent conductive composite films from aqueous colloidal dispersions. Macromolecules 32, 6172 1999Google Scholar
6Soloukhin, V.A., Brokken-Zijp, J.C.M., de With, G.: Conductive ATO-acrylate nanocomposite hybrid coatings: Experimental results and modeling. J. Polym. Sci. Part B: Polym. Phys. 45, 2147 2007CrossRefGoogle Scholar
7Nütz, T., Felde, U. zum, Haase, M.: Wet-chemical synthesis of doped nanoparticles: Blue-colored colloids of n-doped SnO2:Sb. J. Chem. Phys. 110, 12142 1999Google Scholar
8Bai, F.F., He, Y., He, P., Tang, Y.W., Jia, Z.J.: One-step synthesis of monodispersed antimony-doped tin oxide suspension. Mater. Lett. 60, 3126 2006Google Scholar
9Zhang, J.R., Gao, L.: Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method. Mater. Chem. Phys. 87, 10 2004Google Scholar
10Zhang, J.R., Gao, L.: Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles. Inorg. Chem. Comm. 7, 91 2004Google Scholar
11Szczuko, D., Werner, J., Oswald, S., Behr, G., Wetzig, K.: XPS investigations of surface segregation of doping elements in SnO2. Appl. Surf. Sci. 179, 301 2001Google Scholar
12Šeruga, M., Metikoš-Huković, M., Valla, T., Milun, M., Hoffschultz, H., Wandelt, K.: Electrochemical and x-ray photoelectron spectroscopy studies of passive film on tin in citrate buffer solution. J. Electroanal. Chem. 407, 83 1996Google Scholar
13Nütz, T., Haase, M.: Wet-chemical synthesis of doped nanoparticles: Optical properties of oxygen-deficient and antimony-doped colloidal SnO2. J. Phys. Chem. B 104, 8430 2000CrossRefGoogle Scholar
14Terrier, C., Chatelon, J.P., Roger, J.A., Berjoan, R., Dubois, C.: Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method. J. Sol.-Gel Sci. Technol. 10, 75 1997CrossRefGoogle Scholar
15Dusastre, V., Williams, D.E.: Sb(III) as a surface site for water adsorption on Sn(Sb)O2, and its effect on catalytic activity and sensor behavior. J. Phys. Chem. B 102, 6732 1998CrossRefGoogle Scholar
16Slater, B., Catlow, C.R.A., Gay, D.H., Williams, D.E., Dusastre, V.: Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. J. Phys. Chem. B 103, 10644 1999CrossRefGoogle Scholar
17McGinley, C., Borchert, H., Pflughoefft, M., Moussalami, S. Al, de Castro, A.R.B., Haase, M., Weller, H., Möller, T.: Dopant atom distribution and spatial confinement of conduction electrons in Sb-doped SnO2 nanoparticles. Phys. Rev. B 64, 245312 2001Google Scholar
18Posthumus, W., Magusin, P.C.M.M., Brokken-Zijp, J.C.M., Tinnemans, A.H.A., van der Linde, R.: Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. J. Colloid Interf. Sci. 269, 109 2004Google Scholar
19Huijbregts, L.J., Brom, H.B., Brokken-Zijp, J.C.M., Kemerink, M., Chen, Z., de Goeje, M.P., Yuan, M., Michels, M.A.J.: The optimal structure-conductivity relation in epoxy-phthalocyanine nanocomposites. J. Phys. Chem. B 110, 23115 2006Google Scholar
20Shaw, J.D.Introduction to Colloid and Surface Chemistry, 4th ed.Butterworth-Heinemann Ltd. Oxford, England 1992 205Google Scholar
21Adriaanse, L.J., Reedijk, J.A., Teunissen, P.A.A., Brom, H.B., Michels, M.A.J., Brokken-Zijp, J.C.M.: High-dilution carbon-black/polymer composites: Hierarchical percolating network derived from Hz to THz ac conductivity. Phys. Rev. Lett. 78, 1755 1997CrossRefGoogle Scholar
22Chen, Z., Brokken-Zijp, J.C.M., Michels, M.A.J.: Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials: Fractal particle networks and low percolation thresholds. J. Polym. Sci. Part B: Polym. Phys. 44, 33 2006Google Scholar
23Brokken-Zijp, J.C.M., Soloukhin, V.A., Posthumus, W., de With, G.: Nanocomposites with very low filler level for permanent antistatic and static control applications in Proceedings 2003 Athens Conference on Coatings, Science and Technology, Athens Greece 2003 49Google Scholar
24Wakabayashi, A., Sasakawa, Y., Dobashi, T., Yamamoto, T.: Self-assembly of tin oxide nanoparticles: Localized percolating network formation in polymer matrix. Langmuir 22, 9260 2006Google Scholar
25Rockenberger, J., Felde, U. zum, Tischer, M., Troger, L., Haase, M., Weller, H.: Near edge x-ray absorption fine structure measurements (XANES) and extended x-ray absorption fine structure measurements (EXAFS) of the valence state and coordination of antimony in doped nanocrystalline SnO2. J. Chem. Phys. 112, 4296 2000CrossRefGoogle Scholar
26Kojima, M., Kato, H., Gatto, M.: Blackening of tin oxide thin films heavily doped with antimony. Philos. Mag. B 68, 215 1993CrossRefGoogle Scholar
27Bushell, G.C., Yan, Y.D., Woodfield, D., Raper, J., Amal, R.: On techniques for the measurement of the mass fractal dimension of aggregates. Adv. Colloid Interf. Sci. 95, 1 2002Google Scholar
28Schaefer, D.W., Martin, J.E., Wiltzius, P., Cannell, D.S.: Fractal geometry of colloidal aggregates. Phys. Rev. Lett. 52, 2371 1984Google Scholar
29Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 2005Google Scholar
30Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 1976Google Scholar
31Vincent, C.A.: The nature of semiconductivity in polycrystalline tin oxide. J. Electrochem. Soc. 119, 515 1972CrossRefGoogle Scholar
32Qiu, X.F., Burda, C.: Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chem. Phys. 339, 1 2007Google Scholar
33Huijbregts, L.J., Brom, H.B., Brokken-Zijp, J.C.M., Kleinjan, W.E., Michels, M.A.J.: Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites. Phys. Rev. B 77, 15 2008CrossRefGoogle Scholar
34Štangar, U. Lavrenčič, Orel, B., Orel, Z. Crnjak, Bukovec, P., Kosec, M.: Optical and structural properties of SnO2:Sb gels and thin solid films prepared by dip-coating method. Proc. SPIE 1727, 166 1992Google Scholar
35Micek-Ilnicka, A., Gil, B.: FT-IR and microbalance studies of diammonium ions formation in heteropolyacids. Vib. Spectrosc. 43, 435 2007Google Scholar
36Abee, M.W., Cox, D.F.: NH3 chemisorption on stoichiometric and oxygen-deficient SnO2(110) surfaces. Surf. Sci. 520, 65 2002Google Scholar
37Kosmulski, M.: Chemical Properties of Material Surfaces Marcel Dekker Inc., New York 2001Google Scholar
38Patton, T.C.Paint Flow and Pigment Dispersion, 2nd ed.John Wiley & Sons New York 1979Google Scholar