Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T18:04:52.313Z Has data issue: false hasContentIssue false

Using galvanostatic electroforming of Bi1–xSbx nanowires to control composition, crystallinity, and orientation

Published online by Cambridge University Press:  03 December 2014

Steven J. Limmer
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Douglas L. Medlin
Affiliation:
Sandia National Laboratories, Livermore, California 94551, USA
Michael P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Michelle Hekmaty
Affiliation:
Sandia National Laboratories, Livermore, California 94551, USA
Jessica L. Lensch-Falk
Affiliation:
Sandia National Laboratories, Livermore, California 94551, USA
Kristopher Erickson
Affiliation:
Sandia National Laboratories, Livermore, California 94551, USA
Jamin Pillars
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
W. Graham Yelton*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi1–xSbx nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI3-based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl3 bath, the electroformed nanowire arrays were optimized to have nanocompositional uniformity, with a nearly constant composition along the nanowire length. Nanowires harvested from the center of the array had an average composition of Bi0.75Sb0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi0.70Sb0.30.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lin, Y-M., Sun, X., and Dresselhaus, M.S.: Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B 62(7), 4610 (2000).CrossRefGoogle Scholar
Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B: Condens. Matter 47(24), 16631 (1993).CrossRefGoogle ScholarPubMed
Huber, T.E., Onakoya, O., and Ervin, M.H.: Constitutional supercooling and the growth of 200 nm Bi–Sb wire array composites. J. Appl. Phys. 92(3), 1337 (2002).CrossRefGoogle Scholar
Li, L., Li, G., Zhang, Y., Yang, Y., and Zhang, L.: Pulsed electrodeposition of large-area, ordered Bi1-xSbx nanowire arrays from aqueous solutions. J. Phys. Chem. B 108(50), 19380 (2004).CrossRefGoogle Scholar
Dou, X., Li, G., Lei, H., Huang, X., Li, L., and Boyd, I.W.: Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition. J. Electrochem. Soc. 156(9), K149 (2009).CrossRefGoogle Scholar
Müller, S., Schötz, C., Picht, O., Sigle, W., Kopold, P., Rauber, M., Alber, I., Neumann, R., and Toimil-Molares, M.E.: Electrochemical synthesis of Bi1-xSbx nanowires with simultaneous control on size, composition, and surface roughness. Cryst. Growth Des. 12(2), 615 (2012).CrossRefGoogle Scholar
Dou, X., Zhu, Y., Huang, X., Li, L., and Li, G.: Effective deposition potential induced size-dependent orientation growth of Bi−Sb alloy nanowire arrays. J. Phys. Chem. B 110(43), 21572 (2006).CrossRefGoogle ScholarPubMed
Martín-González, M., Prieto, A.L., Knox, M.S., Gronsky, R., Sands, T., and Stacy, A.M.: Electrodeposition of Bi1-xSbx films and 200-nm wire arrays from a nonaqueous solvent. Chem. Mater. 15(8), 1676 (2003).CrossRefGoogle Scholar
Prieto, A.L., Martín-González, M., Keyani, J., Gronsky, R., Sands, T., and Stacy, A.M.: The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires. J. Am. Chem. Soc. 125(9), 2388 (2003).CrossRefGoogle ScholarPubMed
Rabin, O., Lin, Y-M., and Dresselhaus, M.S.: Anomalously high thermoelectric figure of merit in Bi1-xSbx nanowires by carrier pocket alignment. Appl. Phys. Lett. 79(1), 81 (2001).CrossRefGoogle Scholar
Yeager, E.B.: Workshop on Electrochemical Engineering (Case Western Reserve University, Cleveland, OH, 1998).Google Scholar
Prentice, G.: Electrochemical Engineering Principles (Prentice-Hall Inc., Englewood Cliffs, NJ, 1991).Google Scholar
Limmer, S.J., Yelton, W.G., Siegal, M.P., Lensch-Falk, J.L., Pillars, J., and Medlin, D.L.: Electrochemical deposition of Bi2(Te,Se)3 nanowire arrays on Si. J. Electrochem. Soc. 159(4), D235 (2012).CrossRefGoogle Scholar
Oh, J., Shin, Y.C., and Thompson, C.V.: A tungsten interlayer process for fabrication of through-pore AAO scaffolds on gold substrates. J. Electrochem. Soc. 158(1), K11 (2011).CrossRefGoogle Scholar
Brande, P.V. and Winand, R.: Nucleation and initial growth of copper electrodeposits under galvanostatic conditions. Surf. Coat. Technol. 52(1), 1 (1992).CrossRefGoogle Scholar
Paunovic, M. and Schlesinger, M.: Fundamentals of Electrochemical Deposition (John Wiley & Sons, Inc., New York, NY, 1998).Google Scholar
Bard, A.J. and Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications, 2nd ed. (John Wiley & Sons, Inc., New York, NY, 2001).Google Scholar
Michel, S., Diliberto, S., Stein, N., Bolle, B., and Boulanger, C.: Characterisation of electroplated Bi2(Te1−xSex)3 alloys. J. Solid State Electrochem. 12(1), 95 (2008).CrossRefGoogle Scholar
Martín-González, M., Prieto, A.L., Gronsky, R., Sands, T., and Stacy, A.M.: High-density 40 nm diameter Sb-rich Bi2–xSbxTe3 nanowire arrays. Adv. Mater. 15(12), 1003 (2003).CrossRefGoogle Scholar
Koch, T.R. and Purdy, W.C.: Voltammetry in dimethylsulphoxide–a review. Talanta 19(9), 989 (1972).CrossRefGoogle ScholarPubMed
Krueger, J.H.: Nucleophilic displacement in the oxidation of iodide ion by dimethyl sulfoxide. Inorg. Chem. 5(1), 132 (1966).CrossRefGoogle Scholar
Dini, J.W.: Electrodeposition: The Materials Science of Coatings and Substrates (Noyes Publications, Park Ridge, NJ, 1993).Google Scholar