Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T16:01:17.077Z Has data issue: false hasContentIssue false

Twin-mediated crystal growth

Published online by Cambridge University Press:  19 September 2016

Ashwin J. Shahani*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
Peter W. Voorhees
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structure and origin of twin defects have been studied over the past half-century. Recently, there has been renewed interest in investigating the mechanisms by which twin defects facilitate the growth of bulk and nanoscale systems. This article reviews our understanding and experimental advances to unravel the complex role that twin defects play during crystal growth. The following topics are addressed: growth promotion at single and multiple, parallel and antiparallel twin boundaries; the role of {100} and {111} solid–liquid interfaces during crystallization; the application of realtime imaging to the study of crystal growth in the presence of twin defects; and suggested future research needed to shed light on the driving forces for twin-related phenomena. By providing a broad survey of the existing literature on twin-assisted crystal growth, we anticipate that our review will aid researchers in deciphering various growth forms that arise in materials processing applications.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bardeen, J. and Brattain, W.H.: The transistor, a semi-conductor triode. Phys. Rev. 74, 230 (1948).CrossRefGoogle Scholar
Shockley, W.: The theory of p–n junctions in semiconductors and p–n junction transistors. Bell Syst. Tech. J. 28, 435 (1949).CrossRefGoogle Scholar
Hurle, D.T.J. and Rudolph, P.: A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J. Cryst. Growth 264, 550 (2004).CrossRefGoogle Scholar
Mullin, J.B.: Progress in the melt growth of III–V compounds. J. Cryst. Growth 264, 578 (2004).Google Scholar
Friedel, G.: Leçons de Cristallographie (Berger-Levrault, Paris, France, 1926).Google Scholar
Cahn, R.W.: Twinned crystals. Adv. Phys. 3, 363 (1954).CrossRefGoogle Scholar
Hahn, T. and Klapper, H.: Twinning of Crystals, Chap. 3.3 (Wiley, Dordrecht, The Netherlands, 2006); pp. 393448.Google Scholar
Beyerlein, I.J., Zhang, X., and Misra, A.: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).CrossRefGoogle Scholar
Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).Google Scholar
Fujiwara, K., Fukuda, H., Usami, N., Nakajima, K., and Uda, S.: Growth mechanism of the Si 〈110〉 faceted dendrite. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 224106 (2010).Google Scholar
Fujiwara, K., Maeda, K., Usami, N., and Nakajima, K.: Growth mechanism of Si-faceted dendrites. Phys. Rev. Lett. 101, 0555031 (2008).Google Scholar
Gamalski, A.D., Voorhees, P.W., Ducati, C., Sharma, R., and Hofmann, S.: Twin plane re-entrant mechanism for catalytic nanowire growth. Nano Lett. 14, 1288 (2014).CrossRefGoogle ScholarPubMed
Hamilton, D.R. and Seidensticker, R.G.: Propagation mechanism of germanium dendrites. J. Appl. Phys. 31, 1165 (1960).Google Scholar
Ming, N-B.: Defect mechanisms of crystal growth and their kinetics. J. Cryst. Growth 128, 104 (1993).CrossRefGoogle Scholar
Ming, N-B. and Sunagawa, I.: Twin lamellae as possible self-perpetuating step sources. J. Cryst. Growth 87, 13 (1988).Google Scholar
Van de Waal, B.W.: Comment on “Anisotropic growth of twinned cubic crystals”. Phys. Rev. B: Condens. Matter Mater. Phys. 51, 8653 (1995).Google Scholar
Van de Waal, B.W.: Cross-twinning model of FCC crystal growth. J. Cryst. Growth 158, 153 (1996).Google Scholar
Wagner, R.S.: On the growth of germanium dendrites. Acta Metall. 8, 57 (1960).Google Scholar
Gibbs, J.W.: On the Equilibrium of Heterogeneous Substances, Collected Works (Longmans-Green, New York, New York, 1928).Google Scholar
Shahani, A.J., Gulsoy, E.B., Poulsen, S.O., Xiao, X., and Voorhees, P.W.: Twin-mediated crystal growth: An enigma resolved. Sci. Rep. 6, 28651 (2016).Google Scholar
Shahani, A.J., Gulsoy, E.B., Roussochatzakis, V.J., Gibbs, J.W., Fife, J.L., and Voorhees, P.W.: The dynamics of coarsening in highly anisotropic systems: Si particles in Al–Si liquids. Acta Mater. 97, 325 (2015).Google Scholar
Shahani, A.J., Xiao, X., Skinner, K., Peters, M., and Voorhees, P.W.: Ostwald ripening of faceted Si particles in an Al–Si–Cu melt. Mater. Sci. Eng., A 673, 307 (2016).Google Scholar
Lu, S-Z. and Hellawell, A.: The mechanism of silicon modification in aluminum–silicon alloys: Impurity induced twinning. Metall. Trans. A 18, 1721 (1987).Google Scholar
Lee, J-W., Chung, U-J., Hwang, N.M., and Kim, D-Y.: Growth process of the ridge-trough faces of a twinned crystal. Acta Cryst. A61, 405 (2005).Google Scholar
Kelly, A.A. and Knowles, K.M.: Crystallography and Crystal Defects (Wiley-Verlag, Cambridge, England, 2012).CrossRefGoogle Scholar
Hofmeister, H.: Forty years study of fivefold twinned structures in small particles and thin films. Cryst. Res. Technol. 33, 3 (1998).3.0.CO;2-3>CrossRefGoogle Scholar
Marks, L.D. and Howie, A.: Multiply-twinned particles in silver catalysts. Nature 282, 196 (1979).Google Scholar
Fregola, R.N. and Scandale, E.: Cross-twinning in a natural spinel from Sri Lanka. Phys. Chem. Minerals 34, 529 (2007).Google Scholar
Marks, L.D.: Surface structure and energetics of multiply twinned particles. Philos. Mag. A 49, 81 (1984).Google Scholar
Howie, A. and Marks, L.D.: Elastic strains and the energy balance for multiply twinned particles. Philos. Mag. A 49, 95 (1984).Google Scholar
Kurtuldu, G., Jarry, P., and Rappaz, M.: Influence of Cr on the nucleation of primary Al and formation of twinned dendrites in Al–Zn–Cr alloys: Can icosahedral solid clusters play a role? Acta Mater. 61, 7098 (2013).Google Scholar
Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).Google Scholar
Pauling, L.: So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal. Phys. Rev. Lett. 58, 365 (1987).Google Scholar
Janot, C.: Quasicrystals: A Primer (Oxford University Press, Oxford, England, 1992).Google Scholar
Jagannathan, R., Mehta, R.V., Timmons, J.A., and Black, D.L.: Anisotropic growth of twinned cubic crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 48, 13261 (1993).Google Scholar
Jackson, K.A.: Kinetic Processes: Crystal Growth, Diffusion, and Phase Transformations in Materials (Wiley-Verlag, Weinheim, Germany, 2004).Google Scholar
Beatty, K.M. and Jackson, K.A.: Monte Carlo modeling of silicon crystal growth. J. Cryst. Growth 211, 13 (2011).Google Scholar
Ratke, L. and Voorhees, P.W.: Growth and Coarsening: Ripening in Materials Processing (Springer Verlag, Heidelberg, Germany, 2002).CrossRefGoogle Scholar
Bögels, G., Buijnsters, J.G., Verhaeren, S.A.C., Meekes, H., Bennema, P., and Bollen, D.: Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals. J. Cryst. Growth 203, 554 (1999).Google Scholar
Goessens, C., Schryvers, D., Landuyt, J.V., and Amelinckx, S.: Characterization of crystal defects in mixed tabular silver halide grains by conventional transmission electron microscopy and x-ray diffractometry. J. Cryst. Growth 110, 930 (1991).Google Scholar
Hamilton, J.F. and Brady, L.E.: Twinning and growth of silver bromide microcrystals. J. Appl. Phys. 35, 414 (1963).CrossRefGoogle Scholar
Jagannathan, S., Chen, S., Mehta, R.V., and Jagannathan, R.: Direct observation of rough-smooth twin structure in silver halides by high-resolution electron microscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 53, 9 (1995).CrossRefGoogle Scholar
Fujiwara, K., Obinata, Y., Ujihara, T., Usami, N., Sazaki, G., and Nakajima, K.: In-situ observations of melt growth behavior of polycrystalline silicon. J. Cryst. Growth 262, 124 (2004).Google Scholar
Reinhart, G., Buffet, A., Nyugen-Thi, H., Billia, B., Jung, H., Mangelinck-Nöel, N., Bergeon, N., Schenk, T., Härtwig, J., and Baruchel, J.: In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al-3.5 wt pct Ni alloys. Metall. Mater. Trans. A 39, 865 (2008).CrossRefGoogle Scholar
Tandjaoui, A., Mangelinck-Nöel, N., Reinhart, G., Furtera, J-J., Billia, B., Lafford, T., Baruchel, J., and Guichard, X.: Real time observation of the directional solidification of multicrystalline silicon: X-ray imaging characterization. Energy Procedia 27, 82 (2012).Google Scholar
Yang, X., Fujiwara, K., Gotoh, R., Maeda, K., Nozawa, J., Koizumi, H., and Uda, S.: Effect of twin spacing on the growth velocity of Si faceted dendrites. Appl. Phys. Lett. 97, 172104 (2010).CrossRefGoogle Scholar
Yang, X., Fujiwara, K., Maeda, K., Nozawa, J., Koizumi, H., and Uda, S.: Dependence of Si faceted dendrite growth velocity on undercooling. Appl. Phys. Lett. 98, 012113 (2011).Google Scholar
Fujiwara, K., Tokairin, M., Pan, W., Koizumi, H., Nozawa, J., and Uda, S.: Instability of crystal/melt interface including twin boundaries of silicon. Appl. Phys. Lett. 104, 182110 (2014).CrossRefGoogle Scholar
Mullins, W.W. and Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323 (1963).Google Scholar
Mullins, W.W. and Sekerka, R.F.: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444 (1964).Google Scholar
Senechal, M.: The genesis of growth twins. Sov. Phys. Crystallogr. 25, 520 (1980).Google Scholar
Wang, R-Y., Lu, W-H., and Hogan, L.M.: Faceted growth of silicon crystals in Al–Si alloys. Metall. Mater. Trans. A 28, 1233 (1997).Google Scholar
Fujiwara, K., Maeda, K., Usami, N., Sazaki, G., Nose, Y., and Nakajima, K.: Hahanism of parallel twins related to Si-facetted dendrite growth. Scr. Mat. 57, 81 (2007).Google Scholar
Gleiter, H.: Microstructure. In Physical Metallurgy, Cahn, R.W. and Haasen, P. eds.; North Holland: Amsterdam, The Netherlands, 1996.Google Scholar
Tandjaoui, A., Mangelinck-Nöel, N., Reinhart, G., Billia, B., and Guichard, X.: Twinning occurrence and grain competition in multi-crystalline silicon during solidification. C. R. Phys. 14, 141 (2013).Google Scholar
Riberi-Béridot, T., Mangelinck-Nöel, N., Tandjaoui, A., Reinhart, G., Billia, B., Lafford, T., Baruchel, J., and Barrallier, L.: On the impact of twinning on the formation of the grain structure of multi-crystalline silicon for photovoltaic applications during directional solidification. J. Cryst. Growth 418, 38 (2015).Google Scholar
Tsoutsouva, M.G., Riberi-Béridot, T., Regula, G., Reinhart, G., Baruchel, J., Guittonneau, F., Barrallier, L., and Mangelinck-Nöel, N.: In situ investigation of the structural defect generation and evolution during the directional solidification of 〈110〉 seeded growth Si. Acta Mater. 115, 210 (2016).Google Scholar
Duffar, T. and Nadri, A.: On the twinning occurrence in bulk semiconductor crystal growth. Scr. Mater. 62, 955 (2010).Google Scholar
Voronkov, V.V.: Processes at the boundary of a crystallization front. Sov. Phys. Crystallogr. 19, 573 (1975).Google Scholar
Hurle, D.T.J.: A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III–V compound semiconductors. J. Cryst. Growth 147, 239 (1995).Google Scholar
Randle, V.: Twinning-related grain boundary engineering. Acta Mater. 52, 4067 (2004).Google Scholar
Ratanaphan, S., Yoon, Y., and Rohrer, G.S.: The five parameter grain boundary character distribution of polycrystalline silicon. J. Mater. Sci. 49, 4938 (2014).Google Scholar
Dai, Y., Zhang, Y., Bai, Y.Q., and Wang, Z.L.: Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 375, 96 (2003).Google Scholar
de la Mata, M., Leturcq, R., Plissard, S.R., Rolland, C., Magén, C., Arbiol, J., and Caroff, P.: Twin-induced InSb nanosails: A convenient high mobility quantum system. Nano Lett. 16, 825 (2016).Google Scholar
Soo, M.T., Zheng, K., Gao, Q., Tan, H.H., Jagadish, C., and Zou, J.: Mirror-twin induced bicrystalline InAs nanoleaves. Nano Res. 9, 766 (2016).CrossRefGoogle Scholar
Ravi, K.V.: The growth of EFG silicon ribbons. J. Cryst. Growth 39, 1 (1977).Google Scholar
Timpel, M., Wanderka, N., Schlesiger, R., Yamamoto, T., Lazarev, N., Isheim, D., Schmitz, G., Matsumura, S., and Banhart, J.: The role of strontium in modifying aluminium-silicon alloys. Acta Mater. 60, 3920 (2012).CrossRefGoogle Scholar
Li, J., Hage, F., Wiessner, M., Romaner, L., Scheiber, D., Sartory, B., Ramasse, Q., and Schumacher, P.: The roles of Eu during the growth of eutectic Si in Al–Si alloys. Sci. Rep. 5, 13802 (2015).Google Scholar
Nielsen, M.H., Li, D., Zhang, H., Aloni, S., Han, T.Y-J., Frandsen, C., Seto, J., Banfield, J.F., Cölfen, H., and De Yoreo, J.J.: Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 20, 425 (2014).Google Scholar
Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., and Withers, P.J.: Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119 (2016).Google Scholar
Echlin, M.P., Mottura, A., Torbet, C.J., and Pollock, T.M.: A new TriBeam system for three-dimensional multimodal materials analysis. Rev. Sci. Instrum. 83, 023701 (2012).Google Scholar
Echlin, M.P., Titus, M., Kraemer, S., and Pollock, T.: EBSD imaging of femtosecond laser ablated surfaces using the TriBeam system. Microsc. Microanal. 19, 864 (2013).Google Scholar
Rowenhorst, D.J., Gupta, A., Feng, C.R., and Spanos, G.: 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scr. Mater. 55, 11 (2006).Google Scholar
Uchic, M.D.: Serial sectioning methods for generating 3D characterization data of grain- and precipitate-scale microstructures. In Computational Methods for Microstructure-Property Relationships, Ghosh, S. and Dimiduk, D. eds.; Springer-Verlag: New York, New York, 2011.Google Scholar