Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T05:16:56.521Z Has data issue: false hasContentIssue false

A transmission electron microscopy investigation of inverse melting in Nb45Cr55

Published online by Cambridge University Press:  31 January 2011

W. Sinkler
Affiliation:
Institute for Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
C. Michaelsen
Affiliation:
Institute for Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
R. Bormann
Affiliation:
Institute for Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
Get access

Abstract

In inverse melting, a supersaturated crystalline phase transforms polymorphously under heat treatment to the amorphous state. Inverse melting of body-centered cubic (bcc) Nb45Cr55 is studied using transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The crystalline to amorphous transformation is heterogeneous, initiating at the bcc grain boundaries. HRTEM reveals 2–3 nm domains with medium range order (MRO) in the amorphous phase. Preferred orientation of MRO domains is found on a scale corresponding to the precursor bcc grain size. Using HRTEM and calorimetry, MRO development in cosputtered Nb45Cr55 films is characterized and compared to that in the amorphous phase produced by inverse melting.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).Google Scholar
2.Okamoto, P. R. and Meshii, M., in Science of Advanced Materials, edited by Weidersich, H. and Meshii, M. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 33.Google Scholar
3.Schwarz, R. B. and Petrich, R. R., J. Less-Comm. Metals 140, 171 (1988).CrossRefGoogle Scholar
4.Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
5.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
6.Thompson, C. V., J. Mater. Res. 7, 367 (1992).Google Scholar
7.Busch, R., Gärtner, F., Schneider, S., Bormann, R., and Haasen, P., in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 229.Google Scholar
8.Yan, Z. H., Klassen, T., Michaelsen, M., Oehring, M., and Bormann, R., Phys. Rev. B 47, 8520 (1993).Google Scholar
9.Michaelsen, C., Oehring, M., and Bormann, R., Appl. Phys. Lett. 65, 318 (1994).Google Scholar
10.Michaelsen, C., Sinkler, W., Pfullmann, T., and Bormann, R., J. Appl. Phys. 80, 2156 (1996).Google Scholar
11.Sinkler, W. and Bormann, R., unpublished.Google Scholar
12.Michaelsen, C., unpublished.Google Scholar
13.Greer, A. L., J. Less-Comm. Metals. 140, 327 (1988).Google Scholar
14.Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).Google Scholar
15.Okamoto, P., Rehn, L. E., Pearson, J., Bhadra, R., and Grimsditch, M., J. Less-Comm. Metals 140, 231 (1988).Google Scholar
16.Devanathan, R., Lam, N. Q., Okamoto, P. R., and Meshii, M., Phys. Rev. B 48, 42 (1993).Google Scholar
17.Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R., and Grimsditch, M., Phys. Rev. Lett. 59, 2987 (1987).Google Scholar
18.Krill, C. E. I., Li, J., Garland, C. M., Ettl, C., Samwer, K., Yelon, W. B., and Johnson, W. L., J. Mater. Res. 10, 280 (1995).Google Scholar
19.Ettl, C. and Samwer, K., J. Non-Cryst. Solids 156–158, 502 (1993).Google Scholar
20.Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F., and Kluge, M., J. Mater. Res. 5, 286 (1990).Google Scholar
21.Meng, W. J., Okamoto, P. R., and Rehn, L. E., in Science of Advanced Materials, edited by Wiedersich, H. and Meshii, M. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 99.Google Scholar
22.Mori, H. and Fujita, G., in Yamada Conference IX, “Dislocations in Solids,” edited by Suzuki, H. (Univ. of Tokyo Press, Tokyo, 1985), p. 563.Google Scholar
23.Hirotsu, Y. and Akada, R., Jpn. J. Appl. Phys. 23, L479 (1984).Google Scholar
24.Anazawa, K., Hirotsu, Y., and Inoue, Y., Acta Metall. et Mater. 42, 1997 (1994).Google Scholar
25.Krivanek, O. J., in High-Resolution Transmission Electron Microscopy, edited by Buseck, P. R., Cowley, J. M., and Eyring, L. (Oxford University Press, Oxford, 1988), p. 519.Google Scholar
26.Gente, C., Dissertation, Technische Universität Hamburg-Harburg (1996).Google Scholar
27.Michaelsen, C., Philos. Mag. A 72, 813 (1995).CrossRefGoogle Scholar
28.Krakow, W., Ast, D. G., Goldfarb, W., and Siegel, B., Philos. Mag. 33, 985 (1976).Google Scholar
29.Hirotsu, Y., Mater. Sci. Eng. A179/A180, 97 (1994).Google Scholar
30.Hono, K., Zhang, Y., Inoue, A., and Sakurai, T., In Metastable Metal-Based Phases and Microstructures, edited by Bormann, R., Mazzone, G., Averback, R. S., Shull, R. D., and Ziolo, R. F. (Mater. Res. Soc. Symp. Proc. 400, Pittsburgh, PA, 1996), p. 203.Google Scholar
31.Shiojiri, M., Miyano, T., and Kaito, C., Jpn. J. Appl. Phys. 18, 1937 (1979).Google Scholar
32.Nakamura, M., Hirotsu, T., Anazawa, K., Makino, A., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A179/A180, 487 (1994).Google Scholar
33.Makino, A., Suzuki, K., Inoue, A., Hirotsu, Y., and Masumoto, T., J. Magn. Mag. Mater. 133, 329 (1994).Google Scholar
34.Luzzi, D. E. and Meshii, M., J. Mater. Res. 1, 617 (1986).Google Scholar
35.Rostoker, W., Trans AIME 203, 113 (1955).Google Scholar
36.Blatter, A., von Allmen, M., and Baltzer, N., J. Appl. Phys. 62, 276 (1987).Google Scholar
37.Blatter, A., Gfeller, J., and von Allmen, M., J. Less-Comm. Metals 140, 317 (1988).Google Scholar
38.Sinkler, W. and Luzzi, D. E., in Beam Solid Interactions, edited by Aziz, M. J., Stephenson, H. B., and Cherns, D. (Mater. Res. Soc. Symp. Proc. 205, Pittsburgh, PA, 1990), p. 209.Google Scholar
39.Prasad, R., Somekh, R. E., and Greer, A. L., Mater. Sci. Eng. A133, 606 (1991).Google Scholar
40.Ohsaka, K., Trinh, E. H., Holzer, J. C., and Johnson, W. L., Appl. Phys. Lett. 60, 1079 (1992).Google Scholar
41.Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, 1975), Vol. 1.Google Scholar
42.Sinkler, W., Michaelsen, C., Bormann, R., Spilsbury, D., and Cowlam, N., Phys. Rev. B 55, 2874 (1997).Google Scholar
43.Bernal, J. D., Nature (London) 183, 141 (1959).Google Scholar
44.Sinkler, W., Acta Mater. 44, 1623 (1996).Google Scholar
45.Sinkler, W., in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J. S., Park, B., Greer, A. L., and Stephenson, G. B. (Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 263.Google Scholar
46.Bormann, R. and Zöltzer, Z., Phys. Status Solidi 131, 691 (1992).CrossRefGoogle Scholar
47.Waseda, Y. and Chen, H. S., in Proc. of the 3rd Int. Conf. on Rapidly Quenched Metals, edited by Cantor, B. (The Metals Society, Sussex, England, 1978), Vol. 2, p. 415.Google Scholar
48.Egami, T., J. Mater. Sci. 13, 2587 (1978).Google Scholar
49.Schulz, R., Matijasevic, V., and Johnson, W. L., Phys. Rev. B 30, 6856 (1984).Google Scholar
50.Schulz, R., Samwer, K., and Johnson, W. L., J. Non-Cryst. Solids 61 & 62, 997 (1984).Google Scholar
51.Krebs, H. U., Webb, D. J., and Marshall, A. F., Phys. Rev. B 35, 5392 (1987).Google Scholar
52.Hirotsu, Y. and Anazawa, K., in Current Topics in Amorphous Materials: Physics and Technology, edited by Sakurai, Y., Hamakawa, Y., Masumoto, T., Shirae, K., and Suzuki, K. (North-Holland, Amsterdam, 1993), p. 39.Google Scholar
53.Gärtner, F., Michaelsen, C., and Bormann, R., Philos. Mag. B (1997, in press).Google Scholar
54.Schlüter, H., Freyhardt, H. C., Krebs, H. U., and Bormann, R., Z. Phys. Chem. 157, 407 (1988).Google Scholar
55.Visokay, M. R., Kuwabara, M., Saffari, H., Hayashi, H., Sinclair, R., and Onishi, Y., in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Floro, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 381.Google Scholar