Article contents
Transfer behavior in low-amplitude oscillating wear of nanocrystalline copper under oil lubrication
Published online by Cambridge University Press: 31 January 2011
Abstract
Nanocrystalline (NC) Cu samples were synthesized by means of surface mechanical attrition treatment, from which a layer of NC structure was formed on a coarse-grained Cu plate. Low-amplitude oscillating wear/fretting behaviors of the NC Cu samples were investigated under oil lubrication in comparison with those of as-annealed coarse-grained Cu samples. It was found the NC Cu possesses a markedly enhanced wear resistance and a higher friction coefficient relative to the coarse-grained Cu. A continuous metal transfer layer is formed on the mating ball after fretting against the NC Cu, while no material transfer occurs for the as-annealed Cu. The effects of experimental parameters and the hardness of Cu samples on the formation of a transfer layer have been systematically investigated. The transfer layer is evidenced to play an important role in the enhanced wear resistance of the NC Cu, but it has a trivial effect on its high friction coefficient.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
REFERENCES
- 5
- Cited by