Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:27:05.477Z Has data issue: false hasContentIssue false

Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

S. Gupta
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, P.O. Box 23343, Puerto Rico 00931
B.R. Weiner
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, P.O. Box 23343, Puerto Rico 00931
G. Morell
Affiliation:
Department of Physical Sciences, University of Puerto Rico, San Juan, P.O. Box 23323, Puerto Rico 00931
Get access

Abstract

The synthesis of microcrystalline and nanocrystalline carbon thin films using sulfur as an impurity addition to chemical vapor deposition (CVD) was investigated. Sulfur-incorporated microcrystalline diamond (μc-D:S) and nanocrystalline carbon (n-C:S) thin films were deposited on Mo substrates using methane (CH4), hydrogen (H2), and hydrogen sulfide (H2S) gas feedstocks by hot-filament CVD. These films were grown under systematically varied process parameters, while the methane concentration was fixed at 0.3% and 2% for μc-D:S and n-C:S, respectively, to study the corresponding variations of the films’ microstructure. Through these studies we obtained an integral understanding of the materials grown and learned how to control key material properties. The nanocrystalline nature of the material was proposed to be due to the change in the growth mechanisms in the gas phase (continuous secondary nucleation). The growth rate (G) was found to increase with increasing TS and [H2S] in gas phase, thus following the chemisorption model that describes the surface reactions. One of the propositions for the increase was that H2S increases the production rates of methane and consequent methyl radicals without much of its own consumption, which is almost negligible and increases the carbon-containing species. This is analogous to the increase of G with increasing methane concentration, but for the relatively high S/C ratio used here, there is a possibility of its incorporation in the material, however small. This particular conjecture was verified. In this context, the results are discussed in terms of the decomposition of reactant gases (CH4/H2/H2S) that yield ionized species. The inferences drawn are compared to those grown without sulfur to study the influence of sulfur addition to the CVD.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angus, J.C., Ann. Rev. Mater. Sci. 21, 221 (1991); R. Kalish, in Properties of Diamond, edited by G. Davies (INSPEC, London, U.K., 1994), Chap. 6, and references therein.CrossRefGoogle Scholar
Garrido, J.A., Nebel, C.E., Stutzmann, M., Gheeraert, E., Casanova, N., Bustarret, E., and Deneuville, A., Diamond Relat. Mater. 11, 347 (2002); M. Werner, R. Job, A. Zaitsev, W.R. Fahrner, W. Seifert, C. Johnston, and P.R. Chalker, Phys. Status Solidi A 154, 385 (1996).CrossRefGoogle Scholar
Angus, J.C., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J., Jansen, F. (CRC, Boca Raton, FL, 1986); P.K. Bachmann and R. Messier, Chem. Eng. News 67, 24 (1989).Google Scholar
Nazare, M.H., in Properties, Growth, and Application of Diamond, EMIS Datareview Series, edited by Davies, G. (INSPEC, London, U.K., 2001), p. 85.Google Scholar
Yoder, M.N., in Synthetic Diamond: Emerging CVD Science and Technology, edited by Spear, K.E., Dismukes, J.P. (John Wiley and Sons, New York, 1994), p. 4; J.E. Field, in The Properties of Diamonds (Academic Press, London, U.K., 1979), p. 151.Google Scholar
John, P., Diamond Relat. Mater. 11, 861 (2002).CrossRefGoogle Scholar
Cui, J.B., Robertson, J., and Milne, W.I., Diamond Relat. Mater. 10, 868 (2001), and references therein.CrossRefGoogle Scholar
Gupta, S., Katiyar, R.S., Gilbert, D.R., Singh, R.K., and Morell, G., J. Appl. Phys. 88, 5695 (2000), and references therein.CrossRefGoogle Scholar
Weide, J. Van der and Nemanich, R.J., Appl. Phys. Lett. 62, 1878 (1993).CrossRefGoogle Scholar
Weide, J. Van der and Nemanich, R.J., Phys. Rev. B 49, 13629 (1994).CrossRefGoogle Scholar
Chen, K.H., Lai, Y.L., Chen, L.C., Wu, J.Y., and Kao, F.J., Thin Solid Films 270, 143 (1995); K.H. Chen, J.Y. Wu, L.C. Chen, C.C. Juan, and T. Hsu, Electrochem. Soc. Proc. 95-21, 57 (1995).CrossRefGoogle Scholar
Yarbrough, W.A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
Ulczynski, M.J., Reinhard, D.K., Prytajko, M., and Amusen, J., in Advances in New Diamond Science and Technology, Proceedings of the 4th International Conference on New Diamond Science and Technology, edited by Kaito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yihikawa, M. (MYU, Tokyo, Japan, 1994), p. 41.Google Scholar
Kalish, R., Diamond Relat. Mater. 10, 1749 (2001), and references therein.CrossRefGoogle Scholar
Gheeraert, E., Koizumi, S., Traji, T., and Kanda, H., Solid State Commun. 113, 577 (2000).CrossRefGoogle Scholar
Gheeraert, E., Casanova, N., Tajani, A., Deneuville, A., Bustarret, E., Garrido, J.A., Nebel, C.E., and Stutzmann, M., Diamond Relat. Mater. 11, 289 (2002).Google Scholar
Nishitani-Gamo, M., Xiao, C., Zhang, Y., Yasu, E., Kikuchi, Y., Sakaguchi, I., Suzuki, T., Sato, Y., and Ando, T., Thin Solid Films 382, 113 (2001), and references therein.CrossRefGoogle Scholar
Kalish, R., Reznik, A., Uzan-Saguy, C., Cytermann, C., Appl. Phys. Lett. 76, 757 (2000).CrossRefGoogle Scholar
Thonke, K. and Sauer, R., in Properties, Growth, and Applications of Diamond, edited by Nazaré, M.H., Neves, A.J. (INSPEC Data Review, London, U.K., 2001), p. 229; K. Thonke, personal communication.Google Scholar
Gupta, S., Weiner, B.R., and Morell, G., J. Appl. Phys. 91, 10088 (2002), and references therein.CrossRefGoogle Scholar
Shenai, K. and Baglia, B.J., in Proc. 1st International Symposium Diamond and Diamond-Like Films, edited by Dismukes, J.P., Purdes, A.J., Meyerson, B.S., Moustakas, T.D., Spear, K.E., Ravi, K.V., and Yoder, M. (The Electrochemical Society, Penington, NJ, 1989), p. 405.Google Scholar
Buckley-Golder, I.M., Lande, S., Chalker, P.R., and Crispin, R.M., in HITEN -An Industrial Strategy for High Temperature Electronics in Europe: 1995 to 2005 (High Temperature Electronics Network, 1994).Google Scholar
Spencer, E.G., Schmidt, P.H., Roy, D.C., and Salsalone, F.J., Appl. Phys. Lett. 29, 118 (1976).CrossRefGoogle Scholar
Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
Gruen, D., Ann. Rev. Mater. Sci. 29, 211 (1999), and references therein.CrossRefGoogle Scholar
Lifshitz, Y., in The Physics of Diamond, Proceedings of the International School of Physics “Enrico Fermi,” Course CXXXV, edited by Paoletti, A., Tucciarone, A. (IOS Press, Amsterdam, The Netherlands, 1997), pp. 209211.Google Scholar
Lifshitz, Y., Diamond Relat. Mater. 8, 1659 (1999).Google Scholar
Grill, A., Diamond Relat. Mater. 8, 428 (1999), and references therein.Google Scholar
Mckenzie, D.R., Rep. Progr. Phys. 59, 1611 (1996).CrossRefGoogle Scholar
Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953 (1971);Google Scholar
Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A.R., and Auciello, O., J. Appl. Phys. 90, 118 (2001).CrossRefGoogle Scholar
Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth. 62, 642 (1983).Google Scholar
Yarbrough, W.A. and Roy, R., in Diamond and Diamond-like Material Synthesis, G.H. Johnson, M.W. Geis, and A.R. Badzian (1988), pp. 77, and references therein.Google Scholar
Mirtich, M.J., Mater. Sci. Forum, 52 & 53, 217 (1989).Google Scholar
Bhusari, D.M., Yang, J.R., Wang, T.Y., Lin, S.T., Chen, K.H., and Chen, L.C., Sol. Stat. Commun. 107, 301 (1998), and references therein.CrossRefGoogle Scholar
Sharda, T., Rahaman, M.M., Nukaya, Y., Soga, T., Jimbo, T., and Umeno, M., Diamond Relat. Mater. 10, 352 (2001).CrossRefGoogle Scholar
Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A.R., and Auciello, O., J. Appl. Phys. 90, 183 (2001), and references therein.Google Scholar
Nistor, L.C., Landuyt, J. Van, Ralchenko, V.G., Obraztsova, E.D., and Smolin, A.A., Diamond Relat. Mater. 6, 159 (1997), and references therein.CrossRefGoogle Scholar
Corrigan, T.D., Krauss, A.R., Gruen, D.M., Auciello, O., and Chang, in Amorphous and Nanostructured Carbon, edited by Robertson, J., Sullivan, J.P., Zhou, O., Allen, T.B., and Coll, B.F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000), 233.Google Scholar
Morrison, N.A., Muhl, S., Rodil, S.E., Ferrari, A.C., Nesladek, M., Milne, W.I., Robertson, J., Phys. Status Solidi A 172, 79 (1999).3.0.CO;2-C>CrossRefGoogle Scholar
Alterowitz, S.A., Warner, J.D., Liu, D.C., and Pouch, J.J., J. Electrochem. Soc. 133, 2339 (1986).CrossRefGoogle Scholar
Mckenzie, D.R., Muller, D.A., and Paithorpe, B.A., Phy. Rev. Lett. 67, 773 (1991).CrossRefGoogle Scholar
Robertson, J., Philos. Mag. B 76, 335 (1997), and references therein.Google Scholar
Beckmann, R., Sobisch, B., and Kulisch, W., Proceedings of the 3rd International Symposium on Diamond Materials (Electrochemical Society Proceedings 93-17, Pennington, NJ, 1993), p. 1206.Google Scholar
Frauenheim, T., Jungnickel, G., Sitch, P. et al. Diamond Relat. Mater. 7, 348 (1998).Google Scholar
Theije, F.K. de, Schermer, J.J., and Enckevort, W.J.P. van, Diamond Relat. Mater. 9, 1439 (2000).CrossRefGoogle Scholar
Patterson, D.E., Chu, C.J., Bai, B.J., Komplin, N.J., Hauge, R.H., and Margrave, J.L., in Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier Science Puiblishers, Amsterdam, The Netherlands, 1991), p. 569.Google Scholar
Barber, G.D. and Yarbrough, W.A., J. Am. Ceram. Soc. 80, 1560 (1997).CrossRefGoogle Scholar
Dandy, D.S., Thin Solid Films 381, 1 (2001).CrossRefGoogle Scholar
Sternschulte, H., Schreck, M., and Stritzker, B., Diamond Relat. Mater. 11, 296 (2002).Google Scholar
Gupta, S., Weiner, B.R., and Morell, G., Appl. Phys. Lett. 80, 1471 (2002).CrossRefGoogle Scholar
Gupta, S., Weiner, B.R., and Morell, G., Diamond Relat. Mater. 11, 799 (2002).CrossRefGoogle Scholar
Hong, B., Lee, J., Collins, R.W., Kuang, Y., Drawl, W., Messier, R., Tsong, T.T., and Strausser, Y.F., Diamond Relat. Mater. 6, 55 (1997).CrossRefGoogle Scholar
Gupta, S., Weiner, B.R., and Morell, G., J. Vac. Sci. Technol. B 20, (2002).Google Scholar
Wang, Y. and Hamers, R.J., Appl. Phys. 66, 2057 (1995).Google Scholar
Bramblett, T.R., Lu, Q., Karasawa, T., Hasan, M-A., Jo, S.K., Greene, J.E., J. Appl. Phys. 76, 1884 (1994).CrossRefGoogle Scholar
Kersten, H. and Kroesen, G.M.W., J. Vac. Sci. Technol. A 8, 38 (1990).CrossRefGoogle Scholar
Möller, W., Fukarek, W., Lange, K., Keudell, A. von, and Jacob, W., Jpn. J. Appl. Phys. 34, 2163 (1995); H. Deutsch and M. Schmidt, Beitr. Plasmaphys. 21, 279 (1981).CrossRefGoogle Scholar
Sonoda, S., Won, J.H., Yagi, H., Hatta, A., Ito, T., and Hiraki, A., Appl. Phys. Lett. 70, 2574 (1997).CrossRefGoogle Scholar
Muller-Sebert, W., Worner, E., Fuchs, F., Wild, C., and Koidl, P., Appl. Phys. Lett. 68, 759 (1996).Google Scholar
Petherbridge, J.R., May, P.W., Fuge, G.M., Rosser, K.N., and Ashfold, M.N.R., Diamond Relat. Mater. 11, 301 (2002).Google Scholar
Gupta, S., Weiner, B.R., and Morell, G., J. Mater. Res. 17, 1820 (2002), and references therein.Google Scholar
Lang, T., Stiegler, J., Kaenel, Y. von, and Blank, E., Diamond Relat. Mater. 5, 1171 (1996).Google Scholar
Connel, L.L., Fleming, J.W., Chu, H-N., Vestyck, D.J., Jr., Jensen, E., and Butler, J.E., J. Appl. Phys. 78, 3622 (1995).Google Scholar
Haubner, R. and Lux, B., Diamond Relat. Mater. 2, 1277 (1993).Google Scholar
Haubner, R., Bohr, S., and Lux, B., Diamond Relat. Mater. 8, 171 (1999).CrossRefGoogle Scholar
Perrin, P.D., Richard, C., and Martin, R., J. Chim. Phys. 85, 185 (1988) 185.CrossRefGoogle Scholar
Connel, L.L., Fleming, J.W., Chu, H-N., Vestyck, D.J., Jr., Jensen, E., and Butler, J.E., J. Appl. Phys. 78, 3622 (1995).CrossRefGoogle Scholar
Hsu, W.L., J. Vac. Sci. Technol A 6, 1803 (1988).Google Scholar
Cullity, B.D., in Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, MA, 1978), p. 102111.Google Scholar
N-Gamo, M., Xiao, C., Zhang, Y., Yasu, E., Kikuchi, Y., Sakaguchi, I., Suzuki, T., Sato, Y., and Ando, T., Thin Solid Films 382, 113 (2001).Google Scholar
Knight, D.S. and White, W.B., J. Mater. Res. 4, 385 (1989);Google Scholar
Yoshikawa, M., Mater. Sci. Forum, 52 & 53, 365 (1989).Google Scholar
Nemanich, R.J., Glass, J.T., Luckovsky, G., and Shröder, R.E., J. Vac. Sci. Technol. A 6, 1783 (1988), and references therein.Google Scholar
Chhowalla, M., Ferrari, A.C., Robertson, J., and Amaratunga, G.A.J., Appl. Phys. Lett. 76, 1419 (2000).CrossRefGoogle Scholar
Gupta, S., Weiner, B.R., and Morell, G., U.S. Patent pending filed in 2002.Google Scholar
Gupta, S., Martinez, A., Weiner, B.R., and Morell, G., Appl. Phys. Lett. 80, 283 (2002), and references therein.Google Scholar
Seigbahn, K., Nordling, C., Johansson, G., Hedman, J., Heden, F., Hamrin, K., Gelius, U., Bergmark, T., Werme, L.O., Manne, R., and Baer, Y., in ESCA Applied to Free Molecules (North-Holland, Amsterdam, The Netherlands, 1969).Google Scholar
Sherwood, P.M.A., in Practical Surface Analysis by AES and XPS, 2nd ed., edited by Briggs, D., Seah, M.P. (Wiley, Chichester, U.K., 1983), Vol. 1.Google Scholar
Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corp., Minneapolis, MN, 1992).Google Scholar
Evans, S. and Thomas, J.M., Proc. Roy. Soc. (London) A 353, 103 (1977).Google Scholar
Enderlein, R. and Harrison, W.A., Phys. Rev. B 30, 1867 (1990).CrossRefGoogle Scholar
Castner, D.G., Hinds, K., and Grainger, D.W., Langmuir 12, 5083 (1996).Google Scholar
Ratner, B.D., Surf. Interface Anal. 23, 521 (1995).CrossRefGoogle Scholar
Chourasia, A.R., Chopra, D.R., Sharma, S.C., Green, M., Dark, C.A., Hyer, R.C., Thin Solid Films 193–194, 1079 (1990), and Ref. 7 therein.Google Scholar
Sun, F., Grainger, D.W., Castner, D.G., and Leach-Scampavia, D.K., Macromolecules 27, 3053 (1994).CrossRefGoogle Scholar
Frenklach, M. and Spear, K.E., J. Mater. Res. 3, 133 (1988).Google Scholar
Spicka, H., Greisser, M., Hutter, H., Grasserbauer, M., Bohr, S., Haubner, R., and Lux, B., Diam. Relat. Mater. 5, 383 (1996).Google Scholar
Waite, M.M. and Shah, S.I., Appl. Phys. Lett. 60, 2344 (1992).Google Scholar
Shiao, J., Zorman, C.A., and Hoffman, R.W., in Scientific Basis for Nuclear Waste Management XX, edited by Gray, W.J., Triay, I.R. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), p. 465.Google Scholar
Zapol, P., Sternberg, M., Curtiss, L.A., Frauenheim, T., and Gruen, D.M. (unpublished).Google Scholar
Shirley, D.A., Phys. Rev. B 5, 4709 (1972); H.E. Bishop, Surf. Interface Anal. 3, 272 (1981).Google Scholar
Salaneck, W.R., Lipari, N.O., Zallen, R., Liang, K. S., Phys. Rev. B 12, 1493 (1975).Google Scholar
F. Le Normand, Hommet, J., Szörényi, T., Fuchs, C., and Fogarassy, E., Phys. Rev. B 64, 235416 (2001).Google Scholar
Zhang, W.T., Sjostorm, H., Ivanov, I., Xing, K.Z., Broitman, E., Sallaneck, W.R., Greene, J.E., Sundgren, J.E., J. Vac. Sci. Technol. A 14, 2696 (1996).CrossRefGoogle Scholar