Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T06:32:19.621Z Has data issue: false hasContentIssue false

Structure property relationships in core-shell BaTiO3–LiF ceramics

Published online by Cambridge University Press:  31 January 2011

C.A. Randall
Affiliation:
Center for Dielectric Studies, Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
S.F. Wang
Affiliation:
Center for Dielectric Studies, Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
D. Laubscher
Affiliation:
Center for Dielectric Studies, Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
J.P. Dougherty
Affiliation:
Center for Dielectric Studies, Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
W. Huebner
Affiliation:
Center for Dielectric Studies, Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

A sintering, microstructural development and dielectric property study of BaTiO3–LiF ceramics was performed to assess the potential application of low-fired multilayer capacitors. Not only does LiF allow for sintering below 1000 °C, it also allows for the manipulation of dielectric properties and interfaces within BaTiO3–LiF ceramics. Using mixing laws, a model of the dielectric properties of the core-shell microstructures is presented that agrees well with the observed experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rawal, B. S., Kahn, M., and Buessem, W. R., “Grain Core-Grain Shell Structures in BaTiO3 Based Dielectrics,” in Advances in Ceramics, edited by Levinson, L. M. (The American Ceramic Society, Westerville, OH, 1981), Vol. 1.Google Scholar
2Hennings, D. and Rosenstein, G., J. Am. Ceram. Soc. 67 (4), 249255 (1985).CrossRefGoogle Scholar
3Lu, H.Y., Bow, I.S., and Deng, W.H., J. Am. Ceram. Soc. 73 (12), 35623568 (1990).CrossRefGoogle Scholar
4Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
5Smolenskii, G.A. and Isupov, V.A., Sov. Phys. Tech. Phys. 24, 1375 (1954).Google Scholar
6Schmelz, H. and Meyer, A., Dtsch. Keram. Ges. 59 (8&9), 436440 (1982).Google Scholar
7Krasevec, V., Drofenik, M., and Kolar, D., J. Am. Ceram. Soc. 73 (4), 856860 (1990).CrossRefGoogle Scholar
8Lin, J.N. and Wu, T.B., J. Am. Ceram. Soc. 72 (9), 17091712 (1989).CrossRefGoogle Scholar
9Porter, D. A. and Easterling, K.E., Phase Transformations in Metah and Alloys (Van Nostrand Reinhold, Inc., New York, 1981).Google Scholar
10Armstrong, T. R. and Buchanan, R. C., J. Am. Ceram. Soc. 73 (5), 12681273 (1990).CrossRefGoogle Scholar
11Endo, T., Kobayashi, T., Sato, T., and Shimada, M., J. Mater. Sci. 25, 619621 (1990).CrossRefGoogle Scholar
12Lewis, G.V. and Catlow, C.R.N.A., Radiat. Eff. 73, 307314 (1983).CrossRefGoogle Scholar
13Megaw, H.D., Proc. Phys. Soc. London, Sect. A 189, 261283 (1947).Google Scholar
14Hagemann, H.J. and Ihrig, H., Phys. Rev. B 20, 38713878 (1979).CrossRefGoogle Scholar
15Smolenskii, G. A., J. Phys. Soc. Jpn., Suppl. 28, 26 (1970).Google Scholar
16Viehland, D.D., Ph.D. Dissertation, Pennsylvania State University (1991).Google Scholar
17Randall, C.A. and Bhalla, A.S., Jpn. J. Appl. Phys. 29 (2), 327333 (1990).CrossRefGoogle Scholar
18Ho, I.C. and Fu, S.L., J. Mater. Sci. 25, 46994703 (1990).CrossRefGoogle Scholar
19Hennings, D. and Schnell, A., J. Am. Ceram. Soc. 65 (12), 539544 (1982).CrossRefGoogle Scholar
20Cross, L.E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
21Diamond, H., J. Appl. Phys. 32 (5), 909915 (1961).CrossRefGoogle Scholar