Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T16:57:22.658Z Has data issue: false hasContentIssue false

Structural properties and thermal stability of Fe/Al2O3 multilayers

Published online by Cambridge University Press:  03 March 2011

O. Lenoble*
Affiliation:
Laboratoire de Métallurgie Physique et Science des Matériaux. URA CNRS 155, Université Henri Poincaré, BP 239, 54506 Vanæuvre-lès-Nancy Cedex, France
J.F. Bobo
Affiliation:
Laboratoire de Métallurgie Physique et Science des Matériaux. URA CNRS 155, Université Henri Poincaré, BP 239, 54506 Vanæuvre-lès-Nancy Cedex, France
H. Fischer
Affiliation:
Laboratoire de Métallurgie Physique et Science des Matériaux. URA CNRS 155, Université Henri Poincaré, BP 239, 54506 Vanæuvre-lès-Nancy Cedex, France
Ph. Bauer
Affiliation:
Laboratoire de Métallurgie Physique et Science des Matériaux. URA CNRS 155, Université Henri Poincaré, BP 239, 54506 Vanæuvre-lès-Nancy Cedex, France
M.F. Ravet
Affiliation:
Laboratoire de Métallurgie Physique et Science des Matériaux. URA CNRS 155, Université Henri Poincaré, BP 239, 54506 Vanæuvre-lès-Nancy Cedex, France
M. Piecuch
Affiliation:
Laboratoire de Métallurgie Physique et Science des Matériaux. URA CNRS 155, Université Henri Poincaré, BP 239, 54506 Vanæuvre-lès-Nancy Cedex, France
*
a)Address all correspondence to this author.
Get access

Abstract

Iron/alumina multilayers have been deposited on sapphire wafers using RF magnetron sputtering. To study the interdiffusion, the multilayers were annealed in a tubular furnace under a 10−7 mbar vacuum, and the samples examined by using a combination of classical diffractometry (θ/2θ) and Grazing Incidence Scattering (GIS) for the phase determination, and Small Angle X-ray Scattering (SAXS) for the superstructure of the multilayers. In all cases, in the as-deposited state the alumina is amorphous and the iron is crystalline in the bcc phase. Thermal anneals at temperatures between 573 and 873 K give evidence for segregation to the interfaces. At higher temperatures, interdiffusion occurs, leading to the formation of different phases. The Fe-Al2O3 interdiffusion coefficient has been evaluated in the temperature range from 873 to 1273 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klomp, J. T., Ceram. Bull. 51 (9), 683 (1972).Google Scholar
2MacDonald, J. E. and Eberhart, J. G., Trans. Metall. Soc. AIME 233, 512 (1965).Google Scholar
3Jiang, Z., Dupuis, V., Vidal, B., Ravet, M. F., and Piecuch, M., J. Appl. Phys. 72, 931 (1992).CrossRefGoogle Scholar
4Piecuch, M., Revue Phys. Appl. 23, 1727 (1988); Bruson, A., Piecuch, M., and Marchal, G., J. Appl. Phys. 58, 1229 (1985).Google Scholar
5Greer, A. L., Dyrbye, K., Aaen Andersen, L. U., Somekh, R. E., Bottinger, J., and Janting, J., in Thin Film Structures and Phase Stability, edited by Clemens, B. M. and Johnson, W. I. (Mater. Res. Soc. Symp. Proc. 187, Pittsburgh, PA, 1990), p. 3.Google Scholar
6Senda, M. and Nagai, Y., J. Appl. Phys. 65 (8), 3157 (1989).Google Scholar
7Lenoble, O., Bobo, J-F., Piecuch, M., Ravet, M-F., and Thomy, A., Le Vide-Les Couches Minces Suppl. 258, 118 (1991).Google Scholar
8Lenoble, O., Bauer, Ph., Bobo, J. F., Fischer, H., Ravet, M. F., and Piecuch, M., J. Phys. Condens. Matter 6, 3337 (1994).CrossRefGoogle Scholar
9Dhez, P., Megtert, S., Ravet, M. F., and Ziegler, E., Proc. S.P.I.E. 984, 89 (1988).Google Scholar
10Piecuch, M. and Névot, L., Mater. Sci. Forum 59–60, 93 (1990).Google Scholar
11Fischer, H. E., Fischer, H., Durand, O., Pellegrino, O., Piecuch, M., Lefebvre, S., and Bessiére, M., Nucl. Instrurn. Methods B (1995, in press).Google Scholar