Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:27:49.841Z Has data issue: false hasContentIssue false

Small-strain (100)/(001)-oriented epitaxial PbTiO3 films with film thickness ranging from nano- to micrometer order grown on (100)CaF2 substrates by metal organic chemical vapor deposition

Published online by Cambridge University Press:  07 February 2013

Mohamed-Tahar Chentir
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan; and Application Laboratory, Bruker AXS, Kanagawa-ku, Yokohama, 221-0022, Japan
Satoru Utsugi
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan; and Application Laboratory, Bruker AXS, Kanagawa-ku, Yokohama, 221-0022, Japan
Takashi Fujisawa
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan; and Application Laboratory, Bruker AXS, Kanagawa-ku, Yokohama, 221-0022, Japan
Yoshitaka Ehara
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan; and Application Laboratory, Bruker AXS, Kanagawa-ku, Yokohama, 221-0022, Japan
Mutsuo Ishikawa
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan; and Application Laboratory, Bruker AXS, Kanagawa-ku, Yokohama, 221-0022, Japan
Hitoshi Morioka
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan; and Application Laboratory, Bruker AXS, Kanagawa-ku, Yokohama, 221-0022, Japan
Tomoaki Yamada
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan; Department of Materials, Physics and Energy Engineering, Nagoya University (PRESTO), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; and Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
Masaaki Matsushima
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
Hiroshi Funakubo*
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Changes in crystal structure and ferroelectric properties are investigated for (100)/(001)-oriented epitaxial PbTiO3 thin films grown on CaF2 substrates by metal organic chemical vapor deposition. In this work, PbTiO3 films, with thickness ranging from 60 to 2000 nm, presented volume fraction of (001)-oriented c-domain higher than 90%. Hence, the residual strain is smaller compared to films deposited on widely investigated SrTiO3 substrates. Additionally, more than 60 μC/cm2 remnant polarization is obtained for all film thickness ranges, and the estimated spontaneous polarization taking into account c-domain volume fraction is about 80 μC/cm2 regardless of film thickness, in good agreement with reported values for the single crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Auciello, O., Scott, J.F., and Ramesh, R.: The physics of ferroelectric memories. Phys. Today 51, 22 (1998).CrossRefGoogle Scholar
2. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: A review. J. Micromech. Microeng. 10, 136 (2000).CrossRefGoogle Scholar
3. Trolier-McKinstry, S. and Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceram. 12, 717 (2004).CrossRefGoogle Scholar
4. Vrejoiu, I., Rhun, G.L., Pintilie, L., Hesse, D., Alexe, M., and Gosele, U.: Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer–by–layer grown, defect–free single–crystalline films. Adv. Mater. 18, 16571661 (2006).CrossRefGoogle Scholar
5. Dawber, M., Lichtensteiger, C., Cantoni, M., Veithen, M., Ghosez, P., Johnston, K., Rabe, K.M., and Triscone, J-M.: Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 95, 177601 (2005).CrossRefGoogle ScholarPubMed
6. Li, A., Wu, D., Ge, C., Wang, H., Wang, M., Wang, M., Liu, Z., and Ming, N.: Structural and electrical properties of PbTiO3 thin films on conductive oxide LaNiO3 coated Si substrates prepared by sol–gel method. Thin Solid Films 375, 220223 (2000).CrossRefGoogle Scholar
7. Wasa, K., Haneda, Y., Sato, T., Adachi, H., Kanno, I., Schlom, D., Trolier-Mckinstry, S., Gan, Q., and Eom, C.: Basic sputtering process and ferroelectric properties of single–domain single–crystal thin films of PbTiO3 . Integr. Ferroelectr. 21, 451460 (1998).CrossRefGoogle Scholar
8. Bartasyte, A., Bouregba, R., Dogheche, E., Boudard, M., Poullain, G., Chaix-Pluchery, O., Jimenez, C., Plausinaitiene, V., Remiens, D., Abrutis, A., Saltyte, Z., and Weiss, F.: Ferroelectric PbTiO3 films grown by pulsed liquid injection MOCVD. Surf. Coat. Technol. 201, 93409344 (2008).CrossRefGoogle Scholar
9. Sreenivas, K., Bjormander, C., Grishin, A.M., and Rao, K.V.: Ferroelectric properties of epitaxial PbTiO3/YBa2Cu3O7-δ/SrTiO3 thin film heterostructure. Microelectron. Eng. 29, 119121 (1995).CrossRefGoogle Scholar
10. Jung, W.W., Lee, H.C., Ahn, W.S., Ahn, S.H., and Choi, S.K.: Switchable single c-domain formation in a heteroepitaxial PbTiO3 thin film on a (001) Nb–SrTiO3 substrate fabricated by means of hydrothermal epitaxy. Appl. Phys. Lett. 86, 252901 (2005).CrossRefGoogle Scholar
11. Pontes, F.M., Rangel, J.H.G., Leite, E.R., Longo, E., Varela, J.A., Araoujo, E.B., and Eiras, J.A.: Low temperature synthesis and electrical properties of PbTiO3 thin films prepared by the polymeric precursor method. Thin Solid Films 366, 232237 (2000).CrossRefGoogle Scholar
12. Tabata, H., Murata, O., Kawai, T., Kawai, S., and Okuyama, M.: c‐axis preferred orientation of laser ablated epitaxial PbTiO3 films and their electrical properties. Appl. Phys. Lett. 64, 428 (1994).CrossRefGoogle Scholar
13. Morita, T. and Cho, Y.: A hydrothermally deposited epitaxial lead titanate thin film on strontium ruthenium oxide bottom electrode. Appl. Phys. Lett. 85, 2331 (2004).CrossRefGoogle Scholar
14. Morita, T. and Cho, Y.: Epitaxial PbTiO3 thin films on SrTiO3(100) and SrRuO3/SrTiO3(100) substrates deposited by a hydrothermal method. Jpn. J. Appl. Phys. 43, 65356538 (2004).CrossRefGoogle Scholar
15. Fujisawa, H., Seioh, Y., Kume, M., and Shimizu, M.: Epitaxial growth and ferroelectric properties of PbTiO3 nanoislands and thin films grown on single-crystalline Pt films. Jpn. J. Appl. Phys. 47, 75057509 (2008).CrossRefGoogle Scholar
16. Martin, R.M.: Piezoelectricity. Phys. Rev. B 5, 16071613 (1972).CrossRefGoogle Scholar
17. Ederer, C. and Spaldin, N.A.: Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).CrossRefGoogle ScholarPubMed
18. Fujisawa, T., Nakaki, H., Ikariyama, R., Morioka, H., Yamada, T., Saito, K., and Funakubo, H.: Thick epitaxial Pb(Zr0.35, Ti0.65)O3 films grown on (100)CaF2 substrates with polar-axis-orientation. Appl. Phys. Exp. 1, 085001 (2008).CrossRefGoogle Scholar
19. Lee, H.N., Nakhmanson, S.M., Chisholm, M.F., Christen, H.M., Rabe, K.M., and Vanderbilt, D.: Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys. Rev. Lett. 98, 217602 (2007).CrossRefGoogle ScholarPubMed
20. Li, Y.L., Hu, S.Y., Liu, Z.K., and Chen, L.Q.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395411 (2002).CrossRefGoogle Scholar
21. Jo, J.Y., Kim, Y.S., Noh, T.W., Yoon, J.G., and Song, T.K.: Coercive fields in ultrathin BaTiO3 capacitors. Appl. Phys. Lett. 89, 232909 (2006).CrossRefGoogle Scholar
22. Utsugi, S., Fujisawa, T., Ikariyama, R., Yasui, S., Nakaki, H., Yamada, T., Ishikawa, M., Matsushima, M., Morioka, H., and Funakubo, H.: Domain structure of (100)/(001)-oriented epitaxial PbTiO3 thick films with various volume fraction of (001) orientation grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 94, 052906 (2009).CrossRefGoogle Scholar
23. Nakaki, H., Kim, Y.K., Yokoyama, S., Ikariyama, R., Nishida, K., Saito, K., and Funakubo, H.: Strain-relaxed structure in (001)/(100)-oriented epitaxial PbTiO3 films grown on (100) SrTiO3 substrates by metal organic chemical vapor deposition. Appl. Phys. Lett. 91, 112904 (2007).CrossRefGoogle Scholar
24. Fujisawa, T., Nakaki, H., Ikariyama, R., Yamada, T., Ishikawa, M., Morioka, H., and Funakubo, H.: Crystal structure and electrical property comparisons of epitaxial Pb(Zr, Ti)O3 thick films grown on(100)CaF2 and (100)SrTiO3 substrates. J. Appl. Phys. 105, 061614 (2009).CrossRefGoogle Scholar
25. Shirane, G. and Hoshino, S.: On the phase transition in lead titanate. J. Phys. Soc. Jpn. 6, 265270 (1951).CrossRefGoogle Scholar
26. Bartasyte, A., Margueron, S., Kreisel, J., Bourson, P., Chaix-Pluchery, O., Rapenne-Homand, L., Santiso, J., Jimenez, C., Abrutis, A., Weiss, F., and Fontana, M.D.: Residual stress estimation in ferroelectric PbTiO3 thin films by Raman spectroscopy. Phys. Rev. B 79, 104104 (2009).CrossRefGoogle Scholar
27. Venevtsev, Y.N., Zhdanov, G.S., Solov’ev, S.P., and Ivanova, V.V.: The internal fields in ferroelectric crystals of PbTiO3 . Kristallografiya 4, 255 (1959).Google Scholar