Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T03:39:19.889Z Has data issue: false hasContentIssue false

The sintering behavior of ultrafine alumina particles

Published online by Cambridge University Press:  31 January 2011

John E. Bonevich*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
Laurence D. Marks
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
*
a)Present address: Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-03, Japan.
Get access

Abstract

Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nabarro, F. R. N., Rept. Conf. Strength of Solids (1948), p. 75.Google Scholar
2.Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
3.Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
4.Hall, E. O., Proc. Phys. Soc. London B 64, 747 (1951).CrossRefGoogle Scholar
5.Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
6.Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
7.Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Metall. 24, 201 (1990).CrossRefGoogle Scholar
8.Wunderlich, W., Ishida, Y., and Maurer, R., Scripta Metall. 24, 403 (1990).CrossRefGoogle Scholar
9.Iijima, S., Jpn. J. Appl. Phys. 23, L347 (1984).CrossRefGoogle Scholar
10.Iijima, S., J. Electron Microsc. 34, 249 (1985).Google Scholar
11.Warble, C. E., J. Mater. Sci. 20, 2512 (1985).CrossRefGoogle Scholar
12.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).CrossRefGoogle Scholar
13.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 24, 145 (1990).CrossRefGoogle Scholar
14.Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
15.Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
16.Zangwill, A., Physics at Surfaces (Cambridge University Press, Cambridge, 1988).CrossRefGoogle Scholar
17.Howie, A. and Marks, L. D., Philos. Mag. A 49, 95 (1984).CrossRefGoogle Scholar
18.Bonevich, J. E., in Proc. 47th Ann. Meet. Electron. Microsc. Soc. Am. (1988), p. 258.Google Scholar
19.Kimoto, K. and Nishida, I., Jpn. J. Appl. Phys. 6, 1047 (1967).CrossRefGoogle Scholar
20.Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
21.Hayashi, T., Ohno, T., Yatsuya, S., and Uyeda, R., Jpn. J. Appl. Phys. 16, 705 (1977).CrossRefGoogle Scholar
22.Thölén, A. R., Acta Metall. 27, 1765 (1979).CrossRefGoogle Scholar
23.Heinemann, K., Yacaman, M. J., Yang, C. Y., and Poppa, H., J. Cryst. Growth 47, 177 (1979).CrossRefGoogle Scholar
24.Bonevich, J. E., Teng, M-H., Johnson, D. L., and Marks, L. D., Review Sci. Instrum. 62, 3061 (1991).CrossRefGoogle Scholar
25.Bonevich, J. E. and Marks, L. D., Microscopy (1992, in press); also in Hitachi Instrument News 17, 4 (1989).Google Scholar
26.There are four cubic ‘γ’-phases in Crystal Data: Determinative Tables, 3rd ed., edited by Donnay, J. D. H. and Ondik, H. M. (JCPDS, 1973), Vol. 2, pp. 35, 189, 195.Google Scholar
27.Rooksby, H. P., X-ray Identification and Crystal Structures of Clay Minerals (London, 1951).Google Scholar
28.Smith, J. V., Geometrical and Structural Crystallography (John Wiley, New York, 1982).Google Scholar
29.Lippens, B. C. and deBoer, J. H., Acta Cryst. 17, 1312 (1964).CrossRefGoogle Scholar
30.Rooksby, H. P. and Rooymans, C. J. M., Clay Minerals Bull. 4, 234 (1961).CrossRefGoogle Scholar
31.Dauger, A. and Fargeot, D., Radiat. Eff. 74, 279 (1983).CrossRefGoogle Scholar
32.Fargeot, D., Mercurio, D., and Dauger, A., Mater. Chem. Phys. 24, 299 (1990).CrossRefGoogle Scholar
33.Jayaram, V. and Levi, C. G., Acta Metall. 37, 569 (1989).CrossRefGoogle Scholar
34.Dieckmann, R., Ber. Bunsenges. Phys. Chem. 86, 112 (1982).CrossRefGoogle Scholar
35.Ernst, F., Pirouz, P., and Heuer, A. H., Philos. Mag. A 63, 259 (1991).CrossRefGoogle Scholar
36. X-ray analysis of UFP specimens conducted by Teng, M-H. at Northwestern University.Google Scholar
37.Teng, M-H., Ph.D. Dissertation, Northwestern University (1991), in preparation.Google Scholar
38.Bonevich, J. E. and Marks, L. D., Ultramicroscopy 35, 161 (1991).CrossRefGoogle Scholar
39.Bursill, L. A. and Lin, P. J., Philos. Mag. A 60, 307 (1989).CrossRefGoogle Scholar
40.Hannson, I. and Thölén, A. R., Philos. Mag. A 37, 535 (1978).CrossRefGoogle Scholar
41.Thölén, A. R., in Microscopic Aspects of Adhesion and Lubrication, edited by Georges, J. M. (Elsevier, Amsterdam, 1982), p. 263.Google Scholar
42.Marks, L. D., Surf. Sci. 150, 302 (1985).CrossRefGoogle Scholar
43.Johnson, D. L., J. Appl. Phys. 40, 192 (1969).CrossRefGoogle Scholar
44.Nichols, F. A., J. Appl. Phys. 37, 2805 (1966).CrossRefGoogle Scholar
45.Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Van Nostrand, New York, 1981), pp. 199201.Google Scholar
46.Searcy, A. W., J. Am. Ceram. Soc. 68, C267 (1985).CrossRefGoogle Scholar
47.Marks, L. D., J. Cryst. Growth 61, 556 (1983).CrossRefGoogle Scholar
48.Ajayan, P. M. and Marks, L. D., Phase Transitions 24–26, 229 (1990).CrossRefGoogle Scholar
49.Shingu, P. H., Ph.D. Dissertation, Northwestern University (1967), p. 64.Google Scholar
50.Komatsu, M. and Fujita, H., Hitachi Instrum. News 21, 18 (1991).Google Scholar
51.Steiner, C.J-P., Hasselman, D. P. H., and Spriggs, R. M., J. Am. Ceram. Soc. 54, 412 (1971).CrossRefGoogle Scholar
52.Hirayama, T., J. Am. Ceram. Soc. 70, C122 (1987).CrossRefGoogle Scholar