Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T11:21:07.134Z Has data issue: false hasContentIssue false

Silver-nanowire-modified fabrics for wide-spectrum antimicrobial applications

Published online by Cambridge University Press:  17 January 2019

Doga Doganay
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
Akin Kanicioglu
Affiliation:
Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara 06500, Turkey
Sahin Coskun
Affiliation:
Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
Gulcin Akca
Affiliation:
Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara 06500, Turkey
Husnu Emrah Unalan*
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Antimicrobial textiles received considerable attention due to public health and personal hygiene concerns. On the other hand, pathogenic microorganisms gain immunity against existing antibacterial products. For these reasons, new and stronger antibacterial agents need to be developed immediately. In this work, silver nanowires (Ag NWs) were decorated onto conventional fabrics via facile and scalable dip and dry method. Antimicrobial activity of the nanowire-decorated fabrics was investigated against a Gram-positive coccus (Staphylococcus aureus), a Gram-negative bacillus (Escherichia coli), a Gram-positive and spore-forming bacillus (Bacillus cereus), and a yeast-like fungus (Candida albicans) via disk diffusion and time–dependent killing methods. The effect of Ag NW content was investigated, and the decorated fabrics showed promising antibacterial activity even with a small amount of Ag NW decoration (0.095 mg/cm2). Moreover, decorated fabrics maintained their activity for 24 h. This work shows that Ag NW-modified fabrics can be used as antimicrobial textiles against a wide spectrum of bacteria.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hollingsworth, T.D., Ferguson, N.M., and Anderson, R.M.: Frequent travelers and rate of spread of epidemics. Emerg. Infect. Dis. 13, 1288 (2007).CrossRefGoogle ScholarPubMed
Soares, T.P., Garcia, C.S., Roesch-Ely, M., da Costa, M.E.M., Giovanela, M., and Aguzzoli, C.: Cytotoxicity and antibacterial efficacy of silver deposited onto titanium plates by low-energy ion implantation. J. Mater. Res. 33, 2545 (2018).CrossRefGoogle Scholar
Ratha, I., Adarsh, T., Anand, A., Sinha, P.K., Diwan, P., Annapurna, K., and Biswas, K.: In vitro bioactivity and antibacterial properties of bismuth oxide modified bioactive glasses. J. Mater. Res. 33, 178 (2018).Google Scholar
Barbut, F., Maury, E., Goldwirt, L., Boëlle, P.Y., Neyme, D., Aman, R., Rossi, B., and Offenstadt, G.: Comparison of the antibacterial efficacy and acceptability of an alcohol-based hand rinse with two alcohol-based hand gels during routine patient care. J. Hosp. Infect. 66, 167 (2007).CrossRefGoogle ScholarPubMed
Li, Y., Leung, P., Yao, L., Song, Q.W., and Newton, E.: Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 62, 58 (2006).CrossRefGoogle ScholarPubMed
Gao, Y. and Cranston, R.: Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78, 60 (2008).Google Scholar
Zanoaga, M. and Tanasa, F.: Antimicrobial reagents as functional finishing for textiles intended for biomedical applications. I. Synthetic organic compounds. Chem. J. Mold. 9, 14 (2014).CrossRefGoogle Scholar
Hong, X., Wen, J., Xiong, X., and Hu, Y.: Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point of use water disinfection. Chemosphere 154, 537 (2016).Google ScholarPubMed
Antimicrobial Medical Textiles Market Analysis by Finishing Agent (Quaternary Ammonium, Triclosan, Metallic Salts), by Application (Implantable Goods, Non-implantable Goods, Healthcare & Hygiene Products) and Segment Forecasts to 2024 (2016). Available at: https://www.grandviewresearch.com/industry-analysis/antimicrobial-medical-textiles-market (accessed November 25, 2017).Google Scholar
Alexander, J.W.: History of the medical use of silver. Surg. Infect. 10, 289 (2009).CrossRefGoogle ScholarPubMed
Dubas, S.T., Kumlangdudsana, P., and Potiyaraj, P.: Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf., A 289, 105 (2006).CrossRefGoogle Scholar
Lee, H.J., Yeo, S.Y., and Jeong, S.H.: Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 38, 2199 (2003).CrossRefGoogle Scholar
Yeo, S.Y. and Jeong, S.H.: Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym. Int. 52, 1053 (2003).CrossRefGoogle Scholar
Balantrapu, K. and Goia, D.V.: Silver nanoparticles for printable electronics and biological applications. J. Mater. Res. 24, 2828 (2009).CrossRefGoogle Scholar
Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., and Kim, J.O.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662 (2000).3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., and Yacaman, M.J.: The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346 (2005).CrossRefGoogle ScholarPubMed
Xiu, Z.M., Zhang, Q.B., Puppala, H.L., Colvin, V.L., and Alvarez, P.J.: Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271 (2012).CrossRefGoogle ScholarPubMed
Amro, N.A., Kotra, L.P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S., and Liu, G.Y.: High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: Structural basis for permeability. Langmuir 16, 2789 (2000).CrossRefGoogle Scholar
Rizzello, L. and Pompa, P.P.: Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 43, 1501 (2014).CrossRefGoogle ScholarPubMed
Gorth, D.J., Rand, D.M., and Webster, T.J.: Silver nanoparticle toxicity in Drosophila: Size does matter. Int. J. Nanomed. 6, 343 (2011).Google ScholarPubMed
George, S., Lin, S., Ji, Z., Thomas, C.R., Li, L., Mecklenburg, M., Meng, H., Wang, X., Zhang, H., Xia, T., Hohman, J.N., Lin, S., Zinhk, J.T., Weiss, P.S., and E Nel, A.: Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6, 3745 (2011).CrossRefGoogle Scholar
Charehsaz, M., Coskun, S., Unalan, H.E., Reis, R., Helvacioglu, S., Giri, A.K., and Aydin, A.: Genotoxicity study of high aspect ratio silver nanowires. Toxicol. Environ. Chem. 99, 837 (2017).CrossRefGoogle Scholar
Lei, J., Tang, Y., Luo, Y., Duan, T., and Zhu, W.: High-strength konjac glucomannan/silver nanowires composite films with antibacterial properties. Materials 10, 524 (2017).CrossRefGoogle ScholarPubMed
Zhao, C., Deng, B., Chen, G., Lei, B., Hua, H., Peng, H., and Yan, Z.: Large-area chemical vapor deposition-grown monolayer graphene wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res. 9, 963 (2016).CrossRefGoogle Scholar
Jiang, S. and Teng, C.P.: Fabrication of silver nanowires-loaded polydimethylsiloxane film antimicrobial activities and cell compatibility. Mater. Sci. Eng., C 70, 1011 (2016).CrossRefGoogle ScholarPubMed
Satoungar, M.T., Fattahi, S., Azizi, H., and Mehrizi, M.K.: Electrospinning of polylactic acid/silver nanowire biocomposites: Antibacterial and electrical resistivity studies. Polym. Compos. 39, E65 (2018).CrossRefGoogle Scholar
Cui, H.W., Suganuma, K., and Uchida, H.: Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 8, 1604 (2015).CrossRefGoogle Scholar
Hsu, P.C., Liu, X., Liu, C., Xie, X., Lee, H.R., Welch, A.J., Zhao, T., and Cui, Y.: Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15, 365 (2014).CrossRefGoogle ScholarPubMed
Doganay, D., Coskun, S., Genlik, S.P., and Unalan, H.E.: Silver nanowire decorated heatable textiles. Nanotechnology 27, 435201 (2016).CrossRefGoogle ScholarPubMed
Hebeish, A., El-Naggar, M.E., Fouda, M.M.G., Ramadan, M.A., Al-Deyab, S.S., and El-Rafie, M.H.: Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr. Polym. 80, 936 (2011).CrossRefGoogle Scholar
Messaoud, M., Chadeau, E., Brunon, C., Ballet, T., Rappenne, L., Roussel, F., Leonard, D., Oulahal, N., and Langlet, M.: Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics. J. Photochem. Photobiol., A 215, 147 (2010).CrossRefGoogle Scholar
Coskun, S., Aksoy, B., and Unalan, H.E.: Polyol synthesis of silver nanowires: An extensive parametric study. Cryst. Growth Des. 11, 4963 (2011).CrossRefGoogle Scholar