Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T18:32:43.109Z Has data issue: false hasContentIssue false

Self-organized Zn/ZnO core-shelled hierarchical structures prepared by aqueous chemical growth

Published online by Cambridge University Press:  31 January 2011

C.Y. Kuan
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
J.M. Chou
Affiliation:
Department of Materials Science and Engineering, I-Shou University, Kaohsiung Hsien 840, Taiwan, Republic of China
I.C. Leu*
Affiliation:
Department of Materials Science and Engineering, National United University, Miao-Li 360, Taiwan, Republic of China
M.H. Hon
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Self-assembled core-shelled hierarchical structures consisting of single-crystalline pyramid Zn microtip as a core, converted ZnO coating as the shell, and the grown ZnO nanowires as branches, have been prepared. Such ZnO hierarchical structures fabricated by a simple aqueous chemical growth method on Zn foil substrate are expected to be easily integrated into nanodevices. These self-organized structures are superior to both the random nanoarchitecture arrays formed in vapor system and the precipitated nanostructures suspended in the solution. Because of the easier transportation of electrons from the metallic core to ZnO branches, the self-assembled core-shelled hierarchical structures exhibit better field-emission characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gao, P.X.Wang, Z.L.: Nanopropeller arrays of zinc oxides. Appl. Phys. Lett. 84, 2883 2004CrossRefGoogle Scholar
2Han, X., Wang, G., Zhou, L.Hou, J.G.: Crystal orientation-ordered ZnO nanorod bundles on hexagonal heads of ZnO microcones: Epitaxial growth and self-attraction. Chem. Commun. 212 2006CrossRefGoogle ScholarPubMed
3Zhang, T., Dong, W., Brewer, M.K., Konar, S., Njabon, R.N.Tian, Z.R.: Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 128, 10960 2006CrossRefGoogle ScholarPubMed
4Zhang, Z.P., Yu, H.D., Shao, X.Q.Han, M.Y.: Near-roomtemperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal. Chem. Eur. J. 11, 3149 2005CrossRefGoogle ScholarPubMed
5Wu, X.F., Bai, H., Li, C., Lu, G.Shi, G.Q.: Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chem. Commun. 1655 2006CrossRefGoogle ScholarPubMed
6Kuan, C.Y., Chou, J.M., Leu, I.C.Hon, M.H.: Formation and field emission property of single-crystalline Zn microtip arrays by anodization. Electrochem. Commun. 9, 2093 2007CrossRefGoogle Scholar
7Liu, X., Wu, X., Cao, H.Chang, R.P.H.: Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141 2004CrossRefGoogle Scholar
8Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G.Yang, P.: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231 2005CrossRefGoogle ScholarPubMed
9JCPDS No. 04-0831 International Center for Diffraction Data Newton Square, PA 1953Google Scholar
10Peterson, R.B., Fields, C.L.Gregg, B.A.: Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions. Langmuir 20, 5114 2004CrossRefGoogle ScholarPubMed
11Shen, G., Bando, Y., Gao, Y.Golberg, D.: Synthesis and interface structures of zinc sulfide sheathed zinc-cadmium nanowire heterojunctions. J. Phys. Chem. B 110, 14123 2006CrossRefGoogle ScholarPubMed
12Wu, J.J.Liu, S.C.: Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 81, 1312 2002CrossRefGoogle Scholar
13Cheng, B.Samulski, E.T.: Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem. Commun. 986 2004CrossRefGoogle ScholarPubMed
14Dick, K.A., Deppert, K., Larsson, M.W., Martensson, T., Seifert, W., Wallenberg, L.R.Samuelson, L.: Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380 2004CrossRefGoogle ScholarPubMed
15Lao, J.Y., Wen, J.G.Ren, Z.F.: Hierarchical ZnO nanostructures. Nano Lett. 2, 1287 2002CrossRefGoogle Scholar
16Gao, X.P., Zheng, Z.F., Zhu, H.Y., Pan, G.L., Bao, J.L., Wu, F.Song, D.Y.: Rotor-like ZnO by epitaxial growth under hydrothermal conditions. Chem. Commun. 1428 2004CrossRefGoogle ScholarPubMed
17Jo, S.H., Tu, Y., Huang, Z.P., Carnahan, D.L., Wang, D.Z.Ren, Z.F.: Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82, 3520 2003CrossRefGoogle Scholar
18Zhong, D.Y., Zhang, G.Y., Liu, S., Sakurai, T.Wang, E.G.: Universal field-emission model for carbon nanotubes on a metal tip. Appl. Phys. Lett. 80, 506 2002CrossRefGoogle Scholar
19Chakraborty, G., Chattopadhyay, S., Sarkar, C.K.Pramanik, C.: Tunneling current at the interface of silicon and silicon dioxide partly embedded with silicon nanocrystals in metal oxide semiconductor structures. J. Appl. Phys. 101, 024315 2007CrossRefGoogle Scholar
20Suh, J.S., Jeong, K.S., Lee, J.S.Han, I.: Study of the field-screening effect of highly ordered carbon nanotube arrays. Appl. Phys. Lett. 80, 2392 2002CrossRefGoogle Scholar