Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T22:26:27.480Z Has data issue: false hasContentIssue false

A review of electroplating for V–VI thermoelectric films: from synthesis to device integration

Published online by Cambridge University Press:  11 September 2015

Raimar Rostek
Affiliation:
Institute of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Köhler-Allee 102, 79110 Freiburg, Germany
Nicolas Stein
Affiliation:
Institut Jean Lamour, Université de Lorraine, CNRS, 1 Bd Arago, 57078 Metz cedex 1, France
Clotilde Boulanger*
Affiliation:
Institut Jean Lamour, Université de Lorraine, CNRS, 1 Bd Arago, 57078 Metz cedex 1, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Starting with the first published works on the electrochemical deposition of thermoelectric (TE) V–VI compounds in the early nineties, these past two decades have seen a steady increase in scientific interest and publications on this topic. This is hardly surprising, as TE devices offer unique opportunities for power generation in virtually any environment (“energy harvesting”) or demanding cooling applications through the Peltier effect. This review first provides an overview of the advances in the electrodeposition of n- and p-type thin films based on Bi2(Te, Se)3 and (Bi, Sb)2Te3, the currently best-known TE materials for room temperature applications. The overview includes information about the electrolyte and the deposition conditions as well as the achieved composition, thickness, morphology, and TE properties of the deposited films. Additionally, we present the state-of-the-art and recent developments in electroplating-based fabrication processes for microscale TE devices.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Takahashi, M., Oda, Y., Ogino, T., and Furuta, S.: Electrodeposition of Bi-Te alloy-films. J. Electrochem. Soc. 140(9), 2550 (1993).Google Scholar
Xiao, F., Hangarter, C., Yoo, B., Rheem, Y., Lee, K.H., and Myung, N.V.: Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim. Acta 53(28), 8103 (2008).CrossRefGoogle Scholar
Boulanger, C.: Thermoelectric material electroplating: A historical review. J. Electron. Mater. 39(9), 1818 (2010).Google Scholar
Magri, P., Boulanger, C., and Lecuire, J.M.: Synthesis, properties and performances of electrodeposited bismuth telluride films. J. Mater. Chem. 6(5), 773 (1996).Google Scholar
Huang, L., Wang, W., and Murphy, M.C.: Microfabrication of high aspect ratio Bi-Te alloy microposts and applications in micro-sized cooling probes. Microsyst. Technol. 6(1), 1 (1999).CrossRefGoogle Scholar
Fleurial, J.P., Borshchevsky, A., Ryan, M.A., Phillips, W.M., Snyder, J.G., Caillat, T., Kolawa, A., Herman, J.A., Mueller, P., and Nicolet, M.: Development of thick-film thermoelectric microcoolers using electrochemical deposition. In Thermoelectric Materials 1998—The Next Generation Materials for Small-scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon (Mater. Res. Soc. Symp. Proc. 545, Boston, MA, 1999), p 493.Google Scholar
Miyazaki, Y. and Kajitani, T.: Preparation of Bi2Te3 films by electrodeposition. J. Cryst. Growth 229(1), 542 (2001).Google Scholar
Tittes, K., Bund, A., Plieth, W., Bentien, A., Paschen, S., Plötner, M., Gräfe, H., and Fischer, W.: Electrochemical deposition of Bi2Te3 for thermoelectric microdevices. J. Solid State Electrochem. V7(10), 714 (2003).Google Scholar
Yoo, B.Y., Huang, C.K., Lim, J.R., Herman, J., Ryan, M.A., Fleurial, J.P., and Myung, N.V.: Electrochemically deposited thermoelectric n-type Bi2Te3 thin films. Electrochim. Acta 50(22), 4371 (2005).Google Scholar
Heo, P., Hagiwara, K., Ichino, R., and Okido, M.: Electrodeposition and thermoelectric characterization of Bi2Te3. J. Electrochem. Soc. 153(4), C213 (2006).Google Scholar
Li, S.H., Toprak, M.S., Soliman, H.M.A., Zhou, J., Muhammed, M., Platzek, D., and Muller, E.: Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition. Chem. Mater. 18(16), 3627 (2006).Google Scholar
Glatz, W., Durrer, L., Schwyter, E., and Hierold, C.: Novel mixed method for the electrochemical deposition of thick layers of Bi2+xTe3−x with controlled stoichiometry. Electrochim. Acta 54(2), 755 (2008).CrossRefGoogle Scholar
Diliberto, S., Richoux, V., Stein, N., and Boulanger, C.: Influence of pulsed electrodeposition on stoichiometry and thermoelectric properties of bismuth telluride films. Phys. Status Solidi A 205(10), 2340 (2008).Google Scholar
Ma, Y., Ahlberg, E., Sun, Y., Iversen, B.B., and Palmqvist, A.E.C.: Thermoelectric properties of thin films of bismuth telluride electrochemically deposited on stainless steel substrates. Electrochim. Acta 56(11), 4216 (2011).Google Scholar
Manzano, C., Rojas, A., Decepida, M., Abad, B., Feliz, Y., Caballero-Calero, O., Borca-Tasciuc, D-A., and Martin-Gonzalez, M.: Thermoelectric properties of Bi2Te3 films by constant and pulsed electrodeposition. J. Solid State Electrochem. 17(7), 2071 (2013).Google Scholar
Wu, M., Nguyen, H.P., Vullers, R.J.M., Vereecken, P.M., Binnemans, K., and Fransaer, J.: Electrodeposition of bismuth telluride thermoelectric films from chloride-free ethylene glycol solutions. J. Electrochem. Soc. 160(4), D196 (2013).CrossRefGoogle Scholar
Cao, Y., Zeng, Z.G., Liu, Y.L., Zhang, X.P., Shen, C., Wang, X.H., Gan, Z.X., Wu, H., and Hu, Z.Y.: Electrodeposition and thermoelectric characterization of (00L)-Oriented Bi2Te3 thin films on silicon with seed layer. J. Electrochem. Soc. 160(11), D565 (2013).Google Scholar
Maas, M., Diliberto, S., de Vaulx, C., Azzouz, K., and Boulanger, C.: Use of a soluble anode in electrodeposition of thick bismuth telluride layers. J. Electron. Mater. 43(10), 3857 (2014).Google Scholar
Caballero-Calero, O., Díaz-Chao, P., Abad, B., Manzano, C.V., Ynsa, M.D., Romero, J.J., Rojo, M.M., and Martín-González, M.S.: Improvement of bismuth telluride electrodeposited films by the addition of sodium lignosulfonate. Electrochim. Acta 123, 117 (2014).Google Scholar
Yoo, I.-J., Myung, N.V., Lim, D.C., Song, Y., Jeong, Y.-K., Kim, Y.D., Lee, K.H., and Lim, J.-H.: Electrodeposition of BixTey thin films for thermoelectric application. Thin Solid Films 546, 48 (2013).Google Scholar
Scherrer, S. and Scherrer, H. eds.: Bismuth Telluride, Antimony Telluride, and Their Solid Solutions Handbook of Thermoelectrics edited by D.M. Rowe (CRC Press, New York, NY, 1995).Google Scholar
Goncalves, L.M., Couto, C., Alpuim, P., Rolo, A.G., Volklein, F., and Correia, J.H.: Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films 518(10), 2816 (2010).Google Scholar
Martin-Gonzalez, M., Prieto, A.L., Gronsky, R., Sands, T., and Stacy, A.M.: Insights into the electrodeposition of Bi2Te3. J. Electrochem. Soc. 149(11), C546 (2002).Google Scholar
Suzuki, Y., Chen, Z., and Fuwa, A.: Preparation of BixSb2−xTe3 thermoelectric thin films by electrodeposition from basic solutions. J. Jpn. Inst. Met. Mater. 78(8), 310 (2014).CrossRefGoogle Scholar
Nguyen, H.P., Su, J., Wang, Z., Vullers, R.J.M., Vereecken, P.M., and Fransaer, J.: Investigation of dimethyl sulfoxide electrolytes for electrodepositing thermoelectric bismuth telluride films. ECS Trans. 33(18), 75 (2011).Google Scholar
Jung, K.K. and Ko, J.S.: Thermoelectric generator based on a bismuth-telluride alloy fabricated by addition of ethylene glycol. Curr. Appl. Phys. 14(12), 1788 (2014).Google Scholar
Nguyen, H.P., Wu, M., Su, J., Vullers, R.J.M., Vereecken, P.M., and Fransaer, J.: Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol. Electrochim. Acta 68, 9 (2012).Google Scholar
Golgovici, F., Cojocaru, A., Anicai, L., and Visan, T.: Surface characterization of BiSbTe thermoelectric films electrodeposited from chlorides aqueous solutions and choline chloride based ionic liquids. Mater. Chem. Phys. 126(3), 700 (2011).Google Scholar
Golgovici, F., Cojocaru, A., Nedelcu, M., and Visan, T.: Cathodic deposition of components in BiSbTe ternary compounds as thermoelectric films using choline-chloride-based ionic liquids. J. Electron. Mater. 39(9), 2079 (2010).Google Scholar
Golgovici, F., Cojocaru, A., Nedelcu, M., and Visan, T.: Voltammetric and impedance studies of electrodeposition of Te and its binary compounds with Bi and Sb using choline chloride—Urea based electrolyte. Chalcogenide Lett. 6(8), 323 (2009).Google Scholar
Szymczak, J., Legeai, S., Michel, S., Diliberto, S., Stein, N., and Boulanger, C.: Electrodeposition of stoichiometric bismuth telluride Bi2Te3 using a piperidinium ionic liquid binary mixture. Electrochim. Acta 137, 586 (2014).Google Scholar
Michel, S., Diliberto, S., Boulanger, C., Stein, N., and Lecuire, J.M.: Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: Effect of chemical and electrochemical parameters. J. Cryst. Growth 277(1–4), 274 (2005).CrossRefGoogle Scholar
Schoenleber, J., Stein, N., and Boulanger, C.: Influence of tartaric acid on diffusion coefficients of BiIII, SbIII, TeIV in aqueous medium: Application of electrodeposition of thermoelectric films. J. Electroanal. Chem. 724, 111 (2014).CrossRefGoogle Scholar
Naylor, A.J., Koukharenko, E., Nandhakumar, I.S., and White, N.M.: Surfactant-mediated electrodeposition of bismuth telluride films and its effect on microstructural properties. Langmuir 28(22), 8296 (2012).Google Scholar
Scidone, L., Diliberto, S., Stein, N., Boulanger, C., and Lecuire, J.M.: Electroless method for Bi2Te3 film deposition. Mater. Lett. 59(7), 746 (2005).Google Scholar
Schumacher, C., Reinsberg, K.G., Rostek, R., Akinsinde, L., Baessler, S., Zastrow, S., Rampelberg, G., Woias, P., Detavernier, C., Broekaert, J.A.C., Bachmann, J., and Nielsch, K.: Optimizations of pulsed plated p and n-type Bi2Te3-based ternary compounds by annealing in different ambient atmospheres. Adv. Energy Mater. 3(1), 95 (2013).CrossRefGoogle Scholar
Richoux, V., Diliberto, S., Boulanger, C., and Lecuire, J.M.: Pulsed electrodeposition of bismuth telluride films: Influence of pulse parameters over nucleation and morphology. Electrochim. Acta 52(9), 3053 (2007).CrossRefGoogle Scholar
Wen, S.X., Corderman, R.R., Seker, F., Zhang, A.P., Denault, L., and Blohm, M.L.: Kinetics and initial stages of bismuth telluride electrodeposition. J. Electrochem. Soc. 153(9), C595 (2006).CrossRefGoogle Scholar
Li, G.R., Zheng, F.L., and Tong, Y.X.: Controllable synthesis of Bi2Te3 intermetallic compounds with hierarchical nanostructures via electrochemical deposition route. Cryst. Growth Des. 8(4), 1226 (2008).Google Scholar
Lee, J., Farhangfar, S., Lee, J., Cagnon, L., Scholz, R., Gosele, U., and Nielsch, K.: Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19(36), 365701 (2008).Google Scholar
Liu, D.W. and Li, J.F.: Electrocrystallization process during deposition of Bi-Te films. J. Electrochem. Soc. 155(7), D493 (2008).Google Scholar
Ma, Y., Ahlberg, E., Sun, Y., Iversen, B.B., and Palmqvist, A.E.C.: Thermoelectric characteristics of electrochemically deposited Bi2Te3 and Sb2Te3 thin films of relevance to multilayer preparation. J. Electrochem. Soc. 159(2), D50 (2012).Google Scholar
Lim, J.R., Snyder, G.J., Huang, C.K., Hennan, J.A., Ryan, M.A., and Fleurial, J.P.: Thermoelectric microdevice fabrication process and evaluation at the jet propulsion laboratory (JPL). In XXI International Conference on Thermoelectrics, Proceedings ICT '02, Ieee: New York, 2002; p. 535.Google Scholar
Glatz, W., Schwyter, E., Durrer, L., and Hierold, C.: Bi2Te3-based flexible micro thermoelectric generator with optimized design. J. Microelectromech. Syst. 18(3), 763 (2009).Google Scholar
Chaouni, H., Bessieres, J., Modaressi, A., and Heizmann, J.J.: Texture prediction of Bi2Te3 electroplated layers using Hartman's theory of crystal growth. J. Appl. Electrochem. 30(4), 419 (2000).Google Scholar
Suresh, A., Chatterjee, K., Sharma, V.K.R., Ganguly, S., Kargupta, K., and Banerjee, D.: Effect of pH on structural and electrical properties of electrodeposited Bi2Te3 thin films. J. Electron. Mater. 38(3), 449 (2009).Google Scholar
Takahashi, M., Katou, Y., Nagata, K., and Furuta, S.: The composition and conductivity of electrodeposited Bi-Te Alloy-films. Thin Solid Films 240(1–2), 70 (1994).Google Scholar
Takahashi, M., Kojima, M., Sato, S., Ohnisi, N., Nishiwaki, A., Wakita, K., Miyuki, T., Ikeda, S., and Muramatsu, Y.: Electric and thermoelectric properties of electrodeposited bismuth telluride (Bi2Te3) films. J. Appl. Phys. 96(10), 5582 (2004).Google Scholar
Nguyen, H.P., Su, J., Wang, Z., Vullers, R.J.M., Vereecken, P.M., and Fransaer, J.: Measurement of Seebeck coefficient of electroplated thermoelectric films in presence of a seed layer. J. Mater. Res. 26(15), 1953 (2011).Google Scholar
Deb, B., Isoda, Y., Caballero-Calero, O., Diaz-Chao, P., Martin-Gonzalez, M.S., and Shinohara, Y.: Heat treatment effects on electrochemically grown Bi2Te3 thin films for thermoelectric applications. Mater. Trans. 53(8), 1481 (2012).CrossRefGoogle Scholar
Rostek, R., Kottmeier, J., Kratschmer, M., Blackburn, G., Goldschmidtböing, F., Kröner, M., and Woias, P.: Thermoelectric characterization of electrochemically deposited Bi2Te3 films accounting for the presence of conductive seed layers. J. Electrochem. Soc. 160(9), D408 (2013).Google Scholar
Fleurial, J.P., Snyder, G.N., Herman, J.A., Giauque, P.H., Phillips, W.M., Ryan, M.A., Shakkottai, P., Kolawa, E.A., and Nicolet, M.A.: Thick-film thermoelectric microdevices. In Eighteenth International Conference on Thermoelectrics, 1999; IEEE, Piscataway, NJ; p. 294.Google Scholar
Jun, S.W., Lee, K.Y., and Oh, T.S.: Effects of hydrogen annealing on the thermoelectric properties of electrodeposited Bi2Te3 for nanowire applications. J. Korean Phys. Soc. 48(6), 1708 (2006).Google Scholar
Rostek, R., Sklyarenko, V., and Woias, P.: Influence of vapor annealing on the thermoelectric properties of electrodeposited Bi2Te3. J. Mater. Res. 26, 1785 (2011).CrossRefGoogle Scholar
Rowe, D.M. ed.: Handbook of Thermoelectrics (CRC-Press, New York, NY, 1995).Google Scholar
Michel, S., Stein, N., Schneider, M., Boulanger, C., and Lecuire, J.M.: Optimization of chemical and electrochemical parameters for the preparation of n-type Bi2Te2.7Se0.3 thin films by electrodeposition. J. Appl. Electrochem. 33(1), 23 (2003).Google Scholar
Michel, S., Diliberto, S., Stein, N., Bolle, B., and Boulanger, C.: Characterisation of electroplated Bi2(Te1−xSex)3 alloys. J. Solid State Electrochem. 12(1), 95 (2008).CrossRefGoogle Scholar
Bu, L.X., Wang, W., and Wang, H.: Effect of the substrate on the electrodeposition of Bi2Te3−ySey thin films. Mater. Res. Bull. 43(7), 1808 (2008).Google Scholar
Zimmer, A., Stein, N., Terryn, H., and Boulanger, C.: Optical and thermoelectric characterizations of electroplated n-Bi2(Te0.9Se0.1)3. J. Phys. Chem. Solids 68(10), 1902 (2007).Google Scholar
Nolas, G., Sharp, J., and Goldsmid, H.J. eds.; Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, Germany, 2001).Google Scholar
Zou, Z.G., Cai, K.F., Chen, S., and Qin, Z.: Pulsed electrodeposition and characterization of Bi2Te3−ySey films. Mater. Res. Bull. 47(11), 3292 (2012).Google Scholar
Rashid, M.M., Cho, K.H., and Chung, G-S.: Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film. Appl. Surf. Sci. 279, 23 (2013).Google Scholar
Nedelcu, M., Sima, M., Manea, A.S., Lazarescu, M.F., Ghita, R.V., Craciunoiu, F., and Visan, T.: Bi2−xSbxTe3 thick thermoelectric films obtained by electrodeposition from hydrochloric acid solutions. J. Optoelectron. Adv. Mater. 4(1), 99 (2002).Google Scholar
Del Frari, D., Diliberto, S., Stein, N., Boulanger, C., and Lecuire, J.M.: Pulsed electrodeposition of (Bi1−xSbx)2Te3 thermoelectric thin films. J. Appl. Electrochem. 36(4), 449 (2006).Google Scholar
Li, S.H., Soliman, H.M.A., Zhou, J., Toprak, M.S., Muhammed, M., Platzek, D., Ziolkowski, P., and Muller, E.: Effects of annealing and doping on nanostructured bismuth telluride thick films. Chem. Mater. 20(13), 4403 (2008).Google Scholar
Lim, S.K., Kim, M.Y., and Oh, T.S.: Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications. Thin Solid Films 517(14), 4199 (2009).Google Scholar
Li, F. and Wang, W.: Electrodeposition of BixSb2−xTey thermoelectric thin films from nitric acid and hydrochloric acid systems. Appl. Surf. Sci. 255(7), 4225 (2009).Google Scholar
Kuleshova, J., Koukharenko, E., Li, X.H., Frety, N., Nandhakumar, I.S., Tudor, J., Beeby, S.P., and White, N.M.: Optimization of the electrodeposition process of high-performance bismuth antimony Telluride compounds for thermoelectric applications. Langmuir 26(22), 16980 (2010).Google Scholar
Richoux, V., Diliberto, S., and Boulanger, C.: Pulsed electroplating: A derivate form of electrodeposition for improvement of (Bi1−xSbx)2Te3 thin films. J. Electron. Mater. 39(9), 1914 (2010).Google Scholar
Schumacher, C., Reinsberg, K.G., Akinsinde, L., Zastrow, S., Heiderich, S., Toellner, W., Rampelberg, G., Detavernier, C., Broekaert, J.A.C., Nielsch, K., and Bachmann, J.: Optimization of electrodeposited p-doped Sb2Te3 thermoelectric films by millisecond potentiostatic pulses. Adv. Energy Mater. 2(3), 345 (2012).Google Scholar
Leimkuhler, G., Kerkamm, I., and Reineke-Koch, R.: Electrodeposition of antimony telluride. J. Electrochem. Soc. 149(10), C474 (2002).Google Scholar
Qiu, L.Q., Zhou, J.A., Cheng, X.A., and Ahuja, R.: Electrochemical deposition of Bi2Te3-based thin films. J. Phys. Chem. Solids 71(8), 1131 (2010).Google Scholar
Del Frari, D., Diliberto, S., Stein, N., Boulanger, C., and Lecuire, J.M.: Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1−x)2Te3 films. Thin Solid Films 483(1–2), 44 (2005).Google Scholar
Li, F.H. and Wang, W.: Electrodeposition of P-type BixSb2−xTey thermoelectric film from dimethyl sulfoxide solution. Electrochim. Acta 55(17), 5000 (2010).Google Scholar
Li, F.H., Wang, W., Gong, Y.L., and Li, J.Y.: Electrodeposition of Sbx Tey thermoelectric films from dimethyl sulfoxide solution. J. Electron. Mater. 41(11), 3039 (2012).CrossRefGoogle Scholar
Tittes, K. and Plieth, W.: Electrochemical deposition of ternary and binary systems from an alkaline electrolyte—A demanding way for manufacturing p-doped bismuth and antimony tellurides for the use in thermoelectric elements. J. Solid State Electrochem. 11(2), 155 (2007).Google Scholar
Nguyen, H.P., Peng, X., Murugan, G., Vullers, R.J.M., Vereecken, P.M., and Fransaer, J.: Electrodeposition of antimony, tellurium and their alloys from molten acetamide mixtures. J. Electrochem. Soc. 160(2), D75 (2013).Google Scholar
Yoo, I.J., Song, Y., Lim, D.C., Myung, N.V., Lee, K.H., Oh, M., Lee, D., Kim, Y.D., Kim, S., Choa, Y.H., Lee, J.Y., Lee, K.H., and Lim, J.H.: Thermoelectric characteristics of Sb2Te3 thin films formed via surfactant-assisted electrodeposition. J. Mater. Chem. A 1(17), 5430 (2013).Google Scholar
Jung, H. and Myung, N.V.: Electrodeposition of antimony telluride thin films from acidic nitrate-tartrate baths. Electrochim. Acta 56(16), 5611 (2011).Google Scholar
Huang, Q., Kellock, A.J., and Raoux, S.: Electrodeposition of SbTe phase-change alloys. J. Electrochem. Soc. 155(2), D104 (2008).CrossRefGoogle Scholar
Park, K., Xiao, F., Yoo, B.Y., Rheem, Y., and Myung, N.V.: Electrochemical deposition of thermoelectric SbxTey thin films and nanowires. J. Alloys Compd. 485(1–2), 362 (2009).CrossRefGoogle Scholar
Snyder, G.J., Lim, J.R., Huang, C.K., and Fleurial, J.P.: Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2(8), 528 (2003).Google Scholar
Kim, M.Y. and Oh, T.S.: Thermoelectric power generation characteristics of a thin-film device consisting of electrodeposited n-Bi2Te3 and p-Sb2Te3 thin-film legs. J. Electron. Mater. 42(9), 2752 (2013).Google Scholar
Lim, J.H., Park, M.Y., Lim, D.C., Yoo, B., Lee, J.H., Myung, N.V., and Lee, K.H.: Electrodeposition of p-type SbxTey thermoelectric films. J. Electron. Mater. 40(5), 1321 (2011).Google Scholar
Lim, J.H., Park, M., Lim, D.C., Myung, N.V., Lee, J.H., Jeong, Y.K., Yoo, B., and Lee, K.H.: Synthesis and thermoelectric/electrical characterization of electrodeposited SbxTey thin films. Mater. Res. Bull. 47(10), 2748 (2012).Google Scholar
Kishi, M., Yoshida, Y., Okano, H., Nemoto, H., Funanami, Y., Yamamoto, M., and Kanazawa, H.: Fabrication of a miniature thermoelectric module with elements composed of sintered Bi-Te compounds. In Proceedings ICT'97-XVI International Conference on Thermoelectrics, Ieee: New York, 1997; p. 653.Google Scholar
Kishi, M., Nemoto, H., Hamao, T., Yamamoto, M., Sudou, S., Mandai, M., and Yamamoto, S.: Micro thermoelectric modules and their application to wristwatches as an energy source. In Eighteenth International Conference on Thermoelectrics, 1999; IEEE, Piscataway, NJ; p. 301.Google Scholar
Stordeur, M. and Stark, I.: Low power thermoelectric generator—Self-sufficient energy supply for micro systems. In Proceedings ICT'97-XVI International Conference on Thermoelectrics, Ieee: New York, 1997; p. 575.Google Scholar
Stark, I. and Stordeur, M.: New micro thermoelectric devices based on bismuth telluride-type thin solid films. In Eighteenth International Conference on Thermoelectrics, 1999; IEEE, Piscataway, NJ; p. 465.Google Scholar
Bottner, H.: Thermoelectric micro devices: Current state, recent developments and future aspects for technological progress and applications. In Twenty-First International Conference on Thermoelectrics. Proceedings ICT '02, 2002; IEEE, Piscataway, NJ; p. 511.Google Scholar
Bottner, H., Nurnus, J., Gavrikov, A., Kuhner, G., Jagle, M., Kunzel, C., Eberhard, D., Plescher, G., Schubert, A., and Schlereth, K.H.: New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13(3), 414 (2004).Google Scholar
Bottner, H.: Micropelt miniaturized thermoelectric devices: Small size, high cooling power densities, short response time. In ICT: 2005 24th International Conference on Thermoelectrics, Ieee: New York, 2005; p. 1.Google Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597 (2001).CrossRefGoogle ScholarPubMed
Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., and Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235 (2009).Google Scholar
Strasser, M., Aigner, R., Franosch, M., and Wachutka, G.: Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sens. Actuators, A 9798, 535 (2002).Google Scholar
Strasser, M., Aigner, R., Lauterbach, C., Sturm, T.F., Franosch, M., and Wachutka, G.: Micromachined CMOS thermoelectric generators as on-chip power supply. Sens. Actuators, A 114(2–3), 362 (2004).Google Scholar
Huesgen, T., Woias, P., and Kockmann, N.: Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens. Actuators, A 145, 423 (2008).Google Scholar
Huang, I.Y., Li, M.J., Chen, K.M., Zeng, G.Y., and She, K.D.: Design and fabrication of a column-type microthermoelectric cooler with bismuth telluride and antimony telluride pillars by using electroplating and MEMS technology. In 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2007 IEEE, Piscataway, NJ, USA; p. 487.Google Scholar
Huang, I.Y., Lin, J.C., She, K.D., Li, M.C., Chen, J.H., and Kuo, J.S.: Development of low-cost micro-thermoelectric coolers utilizing MEMS technology. Sens. Actuators, A 148(1), 176 (2008).Google Scholar
Prabhakar, A., Podlaha-Murphy, E.J., Murphy, M.C., and Devireddy, R.: Electrodeposition characteristics of bismuth-telluride films. In Nanoscale Materials Science in Biology and Medicine, Vol. 845, Laurencin, C.T. and Botchwey, E.A. eds. Mater. Res. Soc., Cambridge; 2005; p. 297.Google Scholar
Liu, D.W., Xu, Y., and Li, J.F.: Electrodeposition of Bi2Te3 films and micro-pillar arrays on p-Si(100) wafers. Phys. Status Solidi A 207(2), 354 (2009).Google Scholar
Liu, D.W. and Li, J.F.: Microfabrication of thermoelectric modules by patterned electrodeposition using a multi-channel glass template. J. Solid State Electrochem. 15(3), 479 (2011).Google Scholar
Diliberto, S., Michel, S., Boulanger, C., Lecuire, J.M., Jagle, M., Drost, S., and Bottner, H.: A technology for a device prototyping based on electrodeposited thermoelectric V-VI layers. In Twenty-Second International Conference on Thermoelectrics, Proceedings ICT '03, Ieee: New York, 2003; p. 661.Google Scholar
Fleurial, J., Snyder, J., Herman, G., Smart, J., ShakkottaI, P., Giauque, P.H., and Nicolet, M.A.: Miniaturized thermoelectric power sources. In 34th Intersociety Energy Conversion Engineering Conference Proceeding, Vancouver, BC, Canada, 1999, SAE Technical paper, 1999-01 2569, Warrendale, PA, USA.Google Scholar
Borshchevsky, A., Caillat, T., Fleurial, J.P., Kolawa, E., Olson, N.T., Philips, W.M., and Ryan, M.A.: Electronic device featuring thermoelectric power generation, Callfornla Instltute of Technology, Pasadena, CA (US), US 6,288,321 B1, 1999.Google Scholar
Uda, K., Seki, Y., Saito, M., Sonobe, Y., Hsieh, Y.C., Takahashi, H., Terasaki, I., and Homma, T.: Fabrication of Pi-structured Bi-Te thermoelectric micro-device by electrodeposition. Electrochim. Acta 153, 515 (2015).Google Scholar
Glatz, W., Muntwyler, S., and Hierold, C.: Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens. Actuators, A 132(1), 337 (2006).Google Scholar
Schwyter, E., Glatz, W., Durrer, L., and Hierold, C.: Flexible micro thermoelectric generator based on electroplated Bi2+xTe3−x. In Dtip 2008: Symposium on Design, Test, Integration and Packaging of Mems/Moems, Bright, V.M., Bourouina, T., Courtois, B., Desmulliez, M., Karam, J.M., and Wang, G.J. eds.; EDA Publishing: Grenoble, 2008; p. 46.Google Scholar
Wojtas, N., Schwyter, E., Glatz, W., Kuhne, S., Escher, W., and Hierold, C.: Power enhancement of micro thermoelectric generators by microfluidic heat transfer packaging. Sens. Actuators, A 188, 389 (2012).Google Scholar
Wojtas, N., Ruthemann, L., Glatz, W., and Hierold, C.: Optimized thermal coupling of micro thermoelectric generators for improved output performance. Renewable Energy 60, 746 (2013).Google Scholar
Kim, M.Y. and Oh, T.S.: Thermoelectric thin film device of cross-plane configuration processed by electrodeposition and flip-chip bonding. Mater. Trans. 53(12), 2160 (2012).Google Scholar
Roth, R., Rostek, R., Lenk, G., Kratschmer, M., Cobry, K., and Woias, P.: Two-layer process for a micro thermoelectric cross-plane generator with electroplating and reflow soldering. In Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), 2013, IEEE, Piscataway, NJ; p. 486.Google Scholar
Roth, R., Rostek, R., Cobry, K., Kohler, C., Groh, M., and Woias, P.: Design and characterization of micro thermoelectric cross-plane generators with electroplated Bi2Te3, SbxTey, and reflow soldering. J. Microelectromech. Syst. 23(4), 961 (2014).Google Scholar
Wang, W., Ji, Y., Xu, H., Li, H., Visan, T., and Golgovici, F.: A high packing density micro-thermoelectric power generator based on film thermoelectric materials fabricated by electrodeposition technology. Surf. Coat. Technol. 231, 583 (2013).Google Scholar
Qu, W.M., Plotner, M., and Fischer, W.J.: Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems. J. Micromech. Microeng. 11(2), 146 (2001).Google Scholar
Kim, M.Y. and Oh, T.S.: Thermoelectric characteristics of the thermopile sensors with variations of the width and the thickness of the electrodeposited bismuth-telluride and antimony-telluride thin films. Mater. Trans. 51(10), 1909 (2010).Google Scholar
Stordeur, M.: Valence band structure and the thermoelectric figure-of-merit of (Bil−xSbx)2Te3 crystals. In CRC Handbook of Thermoelectrics, CRC Press, New York, NY, 1995.Google Scholar
Martín-González, M., Caballero-Calero, O., and Díaz-Chao, P.: Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable Sustainable Energy Rev. 24, 288 (2013).Google Scholar
Sander, M.S., Gronsky, R., Sands, T., and Stacy, A.M.: Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chem. Mater. 15(1), 335 (2003).Google Scholar
Martin-Gonzalez, M., Prieto, A.L., Gronsky, R., Sands, T., and Stacy, A.M.: High-density 40 nm diameter Sb-rich Bi2−xSbxTe3 nanowire arrays. Adv. Mater. 15(12), 1003 (2003).Google Scholar
Lim, J.R., Whitacre, J.F., Fleurial, J.P., Huang, C.K., Ryan, M.A., and Myung, N.V.: Fabrication method for thermoelectric nanodevices. Adv. Mater. 17(12), 1488 (2005).Google Scholar
Wang, W., Jia, F., Huang, Q., and Zhang, J.: A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron. Eng. 77, 223 (2005).Google Scholar
Keyani, J., Stacy, A.M., and Sharp, J.: Assembly and measurement of a hybrid nanowire-bulk thermoelectric device. Appl. Phys. Lett. 89(23), 233106 (2006).Google Scholar
Davis, D., Bellamkonda, R., and Mannam, R.S.: Thermocooling of GMR sensors Louisiana Tech University Research Foundation, US8441255 B1, 2013.Google Scholar