Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:23:43.690Z Has data issue: false hasContentIssue false

Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons

Published online by Cambridge University Press:  31 January 2011

M. Endo
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
K. Nishimura
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
Y. A. Kim
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
K. Hakamada
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
T. Matushita
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
M. S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
G. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

Variations of the properties of submicron vapor-grown carbon fibers (VGCFs) and nanofibers, with diameters around 0.1–0.2 μm and 80–100 nm, respectively, are observed by Raman spectroscopy as a function of heat-treatment temperature. The microstructural evolution strongly depends on the original properties of the material, such that the main transition temperatures associated with the onset for establishing two-dimensional graphene ordering are defined below 1500 °C for the nanofibers and 2000 °C for the submicron VGCFs, respectively. The relative intensities (ID/IG) of the as-grown phase for submicron VGCFs and nanofibers are 3.44 and 1.35, while those for the corresponding graphitized samples are 0.393 and 0.497, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Endo, M., Koyama, T., and Hishiyama, Y., Jpn. J. Phys. 15, 2073 (1976).CrossRefGoogle Scholar
2.Endo, M., Chemtech 8, 568 (1988).Google Scholar
3.Baker, R.T.K and Harris, P.S., Chemistry and Physics of Carbon, edited by Walker, P.L. Jr, (Marcel Dekker, New York, 1978), Vol. 14, p. 83.Google Scholar
4.Sacco, A. Jr, Thacker, P., Chang, T.N., Lee, A.T.S, and Gately, R., J. Catal. 119, 322 (1989).Google Scholar
5.Baker, R.T., Harris, P.S., Thomas, R.B., and Waite, R.J., J. Catal. 30, 86 (1973).CrossRefGoogle Scholar
6.Tibbetts, G.G., Endo, M., and Beetz, C.P. Jr, SAMPE J. 30 (1986).Google Scholar
7.Endo, M., NATO Conf. (1998).Google Scholar
8.Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32, 335 (1976).CrossRefGoogle Scholar
9.Endo, M., Takeuchi, K., and Dresselhaus, M.S., J. Phys. Chem. Solids 58, 1707 (1997).Google Scholar
10.Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
11.Chieu, T.C., Dresselhaus, M.S., and Endo, M., Phys. Rev. B26, 5867 (1982).CrossRefGoogle Scholar
12.Dresslhaus, M.S. and Dresslhaus, G., Light Scattering in Solid III, Topics in Applied Physics Vol. 51, edited by Cardona, M. and Guntherodt, G. (Springer, Berlin, Heidelberg, 1982), p. 3.Google Scholar
13.Lespade, P., Al-Jishi, R., and Dresselhaus, M.S., Carbon 20, 427 (1982).CrossRefGoogle Scholar
14.Knight, D.S. and White, W.B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
15.Nemanich, R.J. and Solin, S.A., Phys. Rev. B20, 392 (1979).CrossRefGoogle Scholar
16.Pocsik, I., Hundhauser, M., Koos, M., and Ley, L., J. Non-Cryst. Solids 227–230, 1083 (1998).CrossRefGoogle Scholar
17.Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996), p. 761.Google Scholar
18.Endo, M., Saito, R., Dresselhaus, M.S., and Dresselhaus, G., In Carbon Nanotubes, edited by Ebbesen, W. (CRC, New York, 1997), Chap. 2, p. 35.Google Scholar