Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T01:42:34.519Z Has data issue: false hasContentIssue false

Pressure induced wurtzite-to-zinc blende phase transition in ZnO at finite temperature

Published online by Cambridge University Press:  31 January 2011

Yaping Wu
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen, 361005, People’s Republic of China
Junyong Kang*
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen, 361005, People’s Republic of China
Feng Liu
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We predict a possible phase transition of ZnO from wurtzite to zinc blende structure using first-principles molecular-dynamics simulations. By calculating the Gibbs free energies of the two phases as a function of temperature and hydrostatic pressure, we show that their energy difference decreases continuously with increasing temperature and pressure, and the vibrational entropy plays an important role on the location of the phase transition point. At 300 K, the phase transition is expected to occur at a pressure lower than 30 GPa with an activation energy barrier of 0.386 eV/atom. The transition path was also simulated, along which the system goes through a transient face-centered orthorhombic structure to overcome the energy barrier. Our theory results may be valuable for stabilizating the zinc blende ZnO in experiment.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S-J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 2005CrossRefGoogle Scholar
2Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T.: Recent progress in processing and properties of ZnO. Superlattices Microstruct. 34, 3 2003CrossRefGoogle Scholar
3Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T.: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 2005CrossRefGoogle Scholar
4Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W.: Recent advances in processing of ZnO. J. Vac. Sci. Technol., B 22, 932 2004CrossRefGoogle Scholar
5Ashrafi, A., Jagadish, C.: Review of zincblende ZnO: Stability of metastable ZnO phases. J. Appl. Phys. 102, 071101 2007CrossRefGoogle Scholar
6Wang, S.Q.: A comparative first-principles study of ZnS and ZnO in zinc blende structure. J. Cryst. Growth 287, 185 2006CrossRefGoogle Scholar
7Limpijumnong, S., Jungthawan, S.: First-principles study of the wurtzite-to-rocksalt homogeneous transformation in ZnO: A case of a low-transformation barrier. Phys. Rev. B: Condens. Matter 70, 054104 2004CrossRefGoogle Scholar
8Shimojo, F., Kodiyalam, S., Ebbsjö, I., Kalia, R.K., Nakano, A., Vashishta, P.: Atomistic mechanisms for wurtzite-to-rocksalt structural transformation in cadmium selenide under pressure. Phys. Rev. B: Condens. Matter 70, 184111 2004CrossRefGoogle Scholar
9Wang, Y., Zhang, Y., Chang, W.J., Lu, G.L., Jiang, J.Z., Li, Y.C., Liu, J., Hu, T.D.: Mn effect on wurtzite-to-cubic phase transformation in ZnO. J. Phys. Chem. Solids 66, 1775 2005CrossRefGoogle Scholar
10Bates, C.H., White, W.B., Roy, R.: New high-pressure polymorph of zinc oxide. Science 137, 993 1962CrossRefGoogle Scholar
11Jaffe, J.E., Hess, A.C.: Hartree-Fock study of phase changes in ZnO at high pressure. Phys. Rev. B 48, 7903 1993CrossRefGoogle ScholarPubMed
12Jaffe, J.E., Snyder, J.A., Lin, Z., Hess, A.C.: LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 62, 1660 2000CrossRefGoogle Scholar
13van Walle, A. de, Ceder, G.: First-principles computation of the vibrational entropy of ordered and disordered Pd3V. Phys. Rev. B 61, 5972 2000CrossRefGoogle Scholar
14Pinsook, U.: Molecular dynamics study of vibrational entropy in bcc and hcp zirconium. Phys. Rev. B 66, 024109 2002CrossRefGoogle Scholar
15Morris, J.R., Gooding, R.J.: Vibrational entropy effects at a diffusionless first-order solid-to-solid transition. Phys. Rev. B 43, 6057 1991CrossRefGoogle Scholar
16Reynier, Y., Graetz, J., Swan-Wood, T., Rez, P., Yazami, R., Fultz, B.: Entropy of Li intercalation in LixCoO2. Phys. Rev. B 70, 174304 2004CrossRefGoogle Scholar
17Serrano, J., Romero, A.H., Manjón, F.J., Lauck, R., Cardona, M., Rubio, A.: Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys. Rev. B 69, 094306 2004CrossRefGoogle Scholar
18Durandurdu, M., Drabold, D.A.: Ab initio simulation of first-order amorphous-to-amorphous phase transition of silicon. Phys. Rev. B 64, 014101 2001CrossRefGoogle Scholar
19Meyer, B., Marx, D.: Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 67, 035403 2003CrossRefGoogle Scholar
20Siegel, A., Parlinski, K., Wdowik, U.D.: Ab initio calculation of structural phase transitions in AlN crystal. Phys. Rev. B 74, 104116 2006CrossRefGoogle Scholar
21Cai, D., Kang, J.: Thickness-dependent phase transition of AlxGa1-xN thin films on strained GaN. J. Phys. Chem. 110, 10396 2006CrossRefGoogle ScholarPubMed
22Vočadlo, L., Brodholt, J., Alfè, D., Gillan, M.J., Price, G.D.: Ab initio free energy calculations on the polymorphs of iron at core conditions. Phys. Earth Planet. Inter. 117, 123 2000CrossRefGoogle Scholar
23Cynn, H., Yoo, C.S., Baer, B., Iota-Herbei, V., McMahan, A.K., Nicol, M., Carlson, S.: Martensitic fcc-to-hcp transformation observed in xenon at high pressure. Phys. Rev. Lett. 86, 4552 2001CrossRefGoogle ScholarPubMed
24Kim, E., Nicol, M., Cynn, H., Yoo, C.S.: Martensitic fcc-to-hcp transformations in solid xenon under pressure: A first-principles study. Phys. Rev. Lett. 96, 035504 2006CrossRefGoogle ScholarPubMed
25Wentzcovitch, R.M., Cohen, M.L.: Theoretical model for the hcp-bcc transition in Mg. Phys. Rev. B 37, 5571 1988CrossRefGoogle ScholarPubMed