Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:47:29.407Z Has data issue: false hasContentIssue false

Preparation of zirconia thin films by metalorganic chemical vapor deposition using ultrasonic nebulization

Published online by Cambridge University Press:  31 January 2011

Dong-Young Kim
Affiliation:
Department of Inorganic Materials Engineering, Seoul National University, Shillim-dong, Kwanak-gu, Seoul 151–742, Korea
Choon-Ho Lee
Affiliation:
Department of Materials Engineering, Keimyung University, Nam-gu, Taegu 705–701, Korea
Soon Ja Park
Affiliation:
Department of Inorganic Materials Engineering, Seoul National University, Shillim-dong, Kwanak-gu, Seoul 151–742, Korea
Get access

Abstract

Zirconia (ZrO2) thin films were prepared by metalorganic chemical vapor deposition (MOCVD) using ultrasonic nebulization with new source materials, Zr(OBu)4, Zr(OBu)3(acac), Zr(OBu)2(acac)2, and Zr(OBu) (acac)3. This process is a simple and economic method to prepare oxide thin films. Zr(OBu)4 was successfully reacted with acetylacetone at a molar ratio of 1: 3. Polycrystalline thin films were deposited at a substrate temperature range from 300 to 550 °C. The substitution of alkoxy radicals by acetylacetone made the deposition rate higher and insensitive to substrate temperature. The films deposited below 450 °C mostly had a monoclinic structure, and those deposited above 450 °C had a tetragonal structure. The measured optical energy band gap of zirconia film was 5.32 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bradley, D. C. and Thornton, P., in “Comprehensive Inorganic ChemistryTrotman-Dickenson, A.F., ed.; Pergamon Press, Oxford, 1973; Vol. 3, p. 426.Google Scholar
2. Apparao, K.V.S.R., Sahoo, N.K., and Bagchi, T.C., Thin Solid Films L71, 129 (1985).Google Scholar
3. McKenzie, O. R., Cockayne, D.J., Sceats, M.G., Martin, P. J., Sainty, W.G., and Netterfield, R. P., J. Mater. Sci. 22 (10), 3725 (1987).CrossRefGoogle Scholar
4. Chen, S-Y. and Lu, H-Y., J. Mater. Sci. 23, 1195 (1988).CrossRefGoogle Scholar
5. Heuer, A. H. and Hobbs, L.W., Advances in Ceramics (American Ceramic Society, Westerville, OH, 1989), Vol. 3.Google Scholar
6. Sanker, H., DeNatale, J., Gunning, W., and Nelson, J.G., J. Vac. Sci. Technol. A 5 (5), 2869 (1987).CrossRefGoogle Scholar
7. Tauber, R. N., Dumbri, A. C., and Caffrey, R.E., J. Electrochem. Soc.: Solid State Sci. 118, 747 (1971).CrossRefGoogle Scholar
8. Balog, M., Schieber, M., Michman, M., and Patai, S., Thin Solid Films 47, 109 (1977).CrossRefGoogle Scholar
9. Lee, C. H. and Park, S. J., J. Mater. Sci. in Electronics 1, 219 (1990).CrossRefGoogle Scholar
10. Blandenet, G., Court, M., and Lagarde, Y., Thin Solid Films 77, 81 (1981).CrossRefGoogle Scholar
11. Lang, R. J., J. Acoust. Soc. Am. 34, (1), 6 (1962).CrossRefGoogle Scholar
12. Saxena, U. B., Rai, A. K., Mathur, V. K., and Methora, R. C., J. Chem. Soc. A, 904 (1970).CrossRefGoogle Scholar
13. Yamamoto, Y. and Kambara, S., J. Am. Chem. Soc. 79, 4344 (1957).CrossRefGoogle Scholar
14. Phulé, P. P., J. Mater. Res. 8, 334 (1993).CrossRefGoogle Scholar
15. Conley, R. T., Infrared Spectroscopy (Allyn and Bacon Inc., Boston, MA, 1972), p. 155.Google Scholar
16. Colthup, N. B., Daly, L.H., and Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1975), pp. 284286.Google Scholar
17. Gupta, T. K., Lange, F. F., and Bechtold, J. H., J. Mater. Sci. 13, 1464 (1978).CrossRefGoogle Scholar
18. Garvie, R. C., J. Phys. Chem. 64 (4), 1238 (1965).CrossRefGoogle Scholar
19. Heuer, A. H., Claussen, N., Kriven, W.M., and Ruhle, M., J. Am. Ceram. Soc. 65, (12), 642 (1982).CrossRefGoogle Scholar
20. Scott, H. G., J. Mater. Sci. 19, 1527 (1975).CrossRefGoogle Scholar
21. Lide, D. R., CRC Handbook of Chemistry and Physics (CRC Press, Boston, MA, 1990), pp. 1254.Google Scholar
22. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley & Sons, New York, 1976), p. 595.Google Scholar