Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T00:14:40.590Z Has data issue: false hasContentIssue false

Oxygen incorporation in aluminum nitride via extended defects: Part I. Refinement of the structural model for the planar inversion domain boundary

Published online by Cambridge University Press:  03 March 2011

Alistair D. Westwood
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem. Pennsylvania 18015
Robert A. Youngman
Affiliation:
Carborundum Microelectronics Company, 10409 S. 50th Place, Phoenix, Arizona 85044
Martha R. McCartney
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
Alastair N. Cormack
Affiliation:
New York State College of Ceramics, Alfred University, Alfred, New York 14802
Michael R. Notis
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Get access

Abstract

The model proposed by Harris et al. [J. Mater. Res. 5, 1763–1773 (1990)], describing planar inversion domain boundaries in aluminum nitride, consists of a basal plane of aluminum atoms octahedrally coordinated with respect to oxygen, and with a translation of R = 1/3〈1011〉. This thin sandwich is inserted onto the basal plane of the wurtzite structure of aluminum nitride. This model does not take into consideration any interfacial relaxation phenomena, and is arguably electrically unstable. Therefore, this paper presents a refinement of the model of Harris et al., by incorporating the structural relaxations arising from modifications in local chemistry. The interfacial structure was investigated through the use of conventional transmission electron microscopy, convergent electron diffraction, high resolution transmission electron microscopy, analytical electron microscopy, and atomistic computer simulations. The refined planar inversion domain boundary model is closely based on the original model of Harris et al.; however, the local chemistry is changed, with every fourth oxygen being replaced by a nitrogen. Atomistic computer simulation of these defects, using a classical Born model of ionic solids, verified the stability of these defects as arising from the adjustment in the local chemistry. The resulting structural relaxations take the form of a 0.3 mrad twist parallel to the interface, a contraction of the basal planes adjacent to the planar inversion domain boundary, and an expansion of the c-axis component of the displacement vector; the new displacement vector across the interface is R = 1.3〈1010〉 + ∊〈0001〉, where ∊meas = 0.387 and ∊calc = 0.394.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Otero-Diaz, L.C. and Hyde, B.G., Acta Crystallogr. B 40, 237244 (1984).CrossRefGoogle Scholar
2Blanchin, M. G., Bursill, L. A., and Smith, D.J., Proc. R. Soc. London A 391, 351372 (1984).Google Scholar
3Kihlborg, L. and Sharma, R., J. Microsc. Spectrosc. Electron. 7, 387 (1982).Google Scholar
4Lundberg, M., Sundberg, M., and Magneli, A., J. Solid State Chem. 44, 3240 (1982).CrossRefGoogle Scholar
5England, P. J. and Tilley, R.J.D., Chem. Scripta 22, 108 (1983).Google Scholar
6Hagege, S., Ishida, Y., and Tanaka, S., ISE Grain Boundary Meeting, July 1987, Lake Placid, NY (1987).Google Scholar
7Westwood, A. D. and Notis, M. R., Adv. Ceram. 26, 171187 (1989).Google Scholar
8Kim, J. C. and Goo, E., J. Am. Ceram. Soc. 73, 877884 (1990).CrossRefGoogle Scholar
9Westwood, A. D., Youngman, R. A., McCartney, M. R., Cormack, A. N., and Notis, M.R., J. Mater. Res. 10, 12871300 (1995).CrossRefGoogle Scholar
10Harris, J. H., Youngman, R. A., and Teller, R.G., J. Mater. Res. 5, 17631773 (1990).CrossRefGoogle Scholar
11Hagege, S., Tanaka, S., and Ishida, Y., J. Phys. (Paris) 49, C5, 189194 (1988).CrossRefGoogle Scholar
12Hagege, S., Tanaka, S., and Ishida, Y., J. Jpn. Inst. Metals 52, 11921198 (1988).CrossRefGoogle Scholar
13Youngman, R. A., in Proc. 46th EMS A Meeting, Milwaukee, WI, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1988), pp. 576577.Google Scholar
14Denanot, M. F. and Rabier, J., J. Mater. Sci. 24, 15941598(1989).CrossRefGoogle Scholar
15McKernan, S. and Carter, C. B., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1989), pp. 289294.Google Scholar
16Westwood, A. D. and Notis, M. R., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1989), pp. 295300.Google Scholar
17Youngman, R. A., Harris, J. H., Labun, P. A., Graham, R. J., and Weiss, J. K., in Advanced Electronic Packaging Materials, edited by Barfknecht, A. T., Partridge, J. P., Chen, C. J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1989), pp. 301306.Google Scholar
18McKernan, S., Norton, M. G., and Carter, C. B., in High-Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), pp. 267272.Google Scholar
19Berger, A., J. Am. Ceram. Soc. 74, 11481151 (1991).CrossRefGoogle Scholar
20Hagege, S. and Ishida, Y., Philos. Mag. A 63, 241258 (1991).CrossRefGoogle Scholar
21Westwood, A. D. and Notis, M. R., J. Am. Ceram. Soc. 74, 12261239 (1991).CrossRefGoogle Scholar
22Westwood, A. D., Michael, J. R., and Notis, M. R., in Microbeam Analysis 1991, edited by Howitt, D. G. (San Francisco Press, San Francisco, CA, 1991), pp. 245249.Google Scholar
23McCartney, M.R., Youngman, R. A., and Teller, R.G., Ultramicrosc. 40, 291299 (1992).CrossRefGoogle Scholar
24Westwood, A. D., Michael, J. R., and Notis, M. R., J. Microsc. 167, 287302 (1992).CrossRefGoogle Scholar
25Slack, G. A., J. Phys. Chem. Solids 34, 321335 (1973).CrossRefGoogle Scholar
26Tafto, J. and Spence, J.C.H., J. Appl. Crystallogr. 15, 6064 (1982).CrossRefGoogle Scholar
27Snykers, M., Semeels, R., Delavignette, P., Gevers, G., Van Landuyt, J., and Amelinckx, S., Phys. Status Solidi A 41, 5163 (1977).CrossRefGoogle Scholar
28Aminoff, G. and Broome, G., Kristallogr. Kristallgeom. Krystallphys. Kristallchem. 80, 355376 (1931).Google Scholar
29Austerman, S. B. and Gehman, W. G., J. Mater. Sci. 1, 249260 (1966).CrossRefGoogle Scholar
30Holt, D. B., J. Phys. Chem. Solids 30, 12971308 (1969).CrossRefGoogle Scholar
31Pirouz, P., Chorey, CM., and Powell, J.A., J. Appl. Phys. Lett. 50, 221223 (1987).CrossRefGoogle Scholar
32Liliental-Weber, Z., O'Keefe, M.A., and Washburn, J., Ultramicrosc. 30, 2630 (1989).CrossRefGoogle Scholar
33Van Vechten, J.A., J. Electrochem. Soc. 22, 423429 (1975).CrossRefGoogle Scholar
34Unal, O. and Mitchell, T. E., J. Mater. Res. 7, 14451454 (1992).CrossRefGoogle Scholar
35Lambrecht, W. R.L. and Segall, B., Phys. Rev. B 41, 29482958 (1990).CrossRefGoogle Scholar
36Dravid, V. P., Ph.D. Dissertation, Lehigh University, Bethlehem, PA (1990).Google Scholar
37Mackrodt, W. C., in Structure and Properties of MgO and AI2O3 Ceramics, edited by Kingery, W. D. (The American Ceramics Society, Inc., Westerville, OH); Adv. Ceram. 10, 271280 (1984).Google Scholar
38Wolf, D., in Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W. D. (The American Ceramics Society, Inc., Westerville, OH); Adv. Ceram. 10, 290302 (1984).Google Scholar
39Duffy, D. M. and Tasker, P. W., in Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W. D. (The American Ceramics Society, Inc., Westerville, OH); Adv. Ceram. 10, 281289 (1984).Google Scholar
40Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960), pp. 64107.Google Scholar
41Makovec, D. and Trontelj, M., J. Am. Ceram. Soc. 77, 12021208 (1994).CrossRefGoogle Scholar
42Bruley, J., Bremer, U., and Krasevec, V., J. Am. Ceram. Soc. 75, 31273128 (1992).CrossRefGoogle Scholar
43Kim, J. C. and Goo, E., J. Mater. Sci. 24, 7682 (1989).CrossRefGoogle Scholar
44Massler, O., Senftleben, K-U., and Sockel, H. G., Mater. Sci. Eng. A 154, L19L24 (1992).CrossRefGoogle Scholar
45Youngman, R. A., private communication (1990).Google Scholar
46Stadelmann, P. A., Ultramicrosc. 21, 131145 (1987).CrossRefGoogle Scholar
47Michael, J. R., Williams, D. B., Klein, C. F., and Ayer, R., J. Microsc. 160, 4153 (1989).CrossRefGoogle Scholar
48Malis, T., Cheng, S. C., and Egerton, R. F., J. Electron Microsc. Tech. 8, 193200, (1988).CrossRefGoogle Scholar
49Cormack, A. N., Adv. Solid State Chem. 3, 6398 (1993).Google Scholar
50Cormack, A. N., J. Am. Ceram. Soc. 72, 17301732 (1989).CrossRefGoogle Scholar
51Philips, J. C., Phys. Rev. Lett. 20, 550553 (1968).CrossRefGoogle Scholar
52Van Vechten, J.A., Phys. Rev. B 182, 891905 (1969).CrossRefGoogle Scholar
53Mackrodt, W. C. and Stewart, R. F., J. Phys. C; Solid State Phys. 12, 431449 (1979).CrossRefGoogle Scholar
54Lewis, G. V. and Catlow, C. R. A., J. Phys. C; Solid State Phys. 18, 1149 (1985).CrossRefGoogle Scholar
55Tasker, P. W. and Bullough, T. J., Philos. Mag. A 43, 313324 (1981).CrossRefGoogle Scholar
56Catlow, C. R. A. and Mackrodt, W. C., in Computer Simulation of Solids, edited by Catlow, C. R. A. and Mackrodt, W. C. (Springer-Verlag, New York, 1982), pp. 320.CrossRefGoogle Scholar
57Cormack, A. N. and Catlow, C. R. A., in Atomic Scale Calculations in Materials Science, edited by Tersoff, J., Vanderbilt, D., and Vitek, V. (Mater. Res. Soc. Symp. Proc. 141, Pittsburgh, PA, 1989), pp. 6570.Google Scholar
58Cormack, A. N., Jones, R. M., Tasker, P. W., and Catlow, C. R. A., J. Solid State Chem. 44, 174185 (1982).CrossRefGoogle Scholar
59Westwood, A. D., Ph.D. Dissertation, Lehigh University, Bethlehem, PA (1992).Google Scholar
60Miyazawa, K. and Ishida, Y., Ultramicrosc. 22, 231238 (1987).CrossRefGoogle Scholar
61Miyazawa, K., Ishida, Y., and Suga, T., Philos. Mag. A 58, 825832 (1988).CrossRefGoogle Scholar
62Cockayne, D. J. H., J. Microsc. 98, 116134 (1973).CrossRefGoogle Scholar
63Rasmussen, D. R. and Carter, C. B., J. Electron Microsc. Tech. 18, 429436 (1989).CrossRefGoogle Scholar
64Rasmussen, D. R., Cho, N., Susnitzky, D. W., and Carter, C.B., Ultramicrosc. 30, 2732 (1989).CrossRefGoogle Scholar
65Saxton, W. O. and Smith, D. J., Ultramicrosc. 18, 3949 (1985).CrossRefGoogle Scholar
66Kyser, D. F., in Introduction to Analytical Electron Microscopy, edited by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum Press, New York, 1979), pp. 199219.CrossRefGoogle Scholar
67Romig, A. D., Plimpton, S. J., Michael, J. R., Myklebust, R. L., and Newbury, D.E., in Microbeam Analysis 1990, edited by Michael, J.R. and Ingram, P. (San Francisco Press, San Francisco, CA, 1990), pp. 275279.Google Scholar
68Cliff, G. and Lorimer, G. W., J. Microsc. 103, 203207 (1975).CrossRefGoogle Scholar
69Schultz, H. and Thiemann, K. H., Solid State Commun. 23, 815819 (1977).CrossRefGoogle Scholar
70Jeffery, G. A. and Parry, G. S., J. Chem. Phys. 23, 406 (1955).CrossRefGoogle Scholar