Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T06:40:21.217Z Has data issue: false hasContentIssue false

On the Maxwell–Garnett model of chiral composites

Published online by Cambridge University Press:  31 January 2011

Akhlesh Lakhtakia
Affiliation:
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802-1401
Vijay K. Varadan
Affiliation:
Research Center for the Engineering of Electronic and Acoustic Materials and Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802-1401
Vasundara V. Varadan
Affiliation:
Research Center for the Engineering of Electronic and Acoustic Materials and Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802-1401
Get access

Abstract

The Maxwell–Garnett model for isotropic chiral spherical inclusions in free space has been briefly reviewed, and pertinent results for the effective intrinsic and extrinsic properties of the composite medium, along with useful Taylor expansions, have been obtained in the Drude–Born–Fedorov representation. It has been shown that this model does not yield the chirality parameter of the composite independently of the permeability and the permittivity, and treats the permeability and the permittivity as duals of each other. Finally, even if the inclusions are nonmagnetic, the composite medium may not be necessarily so. It is anticipated that the formulae derived here will not only assist in the formulation of more rigorous multiple scattering theories, but will also aid designers of chiral composites.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Charney, E., The Molecular Basis of Optical Activity (R. E. Rrieger, Malabar, FL, 1985).Google Scholar
2Lakhtakia, A., Varadan, V. K., and Varadan, V. V., Time-Harmonic Electromagnetic Fields in Chiral Media (Springer, Berlin, 1989).Google Scholar
3Varadan, V.V., Lakhtakia, A., and Varadan, V.K., J. Appl. Phys. 63, 280284 (1988); errata: 66, 1504 (1989).CrossRefGoogle Scholar
4Lindman, K. F., Ann. Phys. (Leipzig) 69, 270284 (1922).CrossRefGoogle Scholar
5Tinoco, I. Jr., and Freeman, M.P., J. Phys. Chem. 61, 11961200 (1957).CrossRefGoogle Scholar
6Guire, T., Varadan, V. V., and Varadan, V. K., IEEE Trans. Elec-tromagn. Compat. 32, 300303 (1990).CrossRefGoogle Scholar
7Varadan, V. V., Ma, Y., and Varadan, V. K., Radio Sci. 24, 785792 (1989).CrossRefGoogle Scholar
8Lakhtakia, A., Varadan, V. K., and Varadan, V. V., Appl. Opt. 28, 36273632 (1990).CrossRefGoogle Scholar
9Sihvola, A.H. and Lindell, I.V., Electron. Lett. 26, 118119 (1990).CrossRefGoogle Scholar
10O'Brien, S.G. and Goedecke, G.H., Appl. Opt. 27, 24392444 (1988).CrossRefGoogle Scholar
11Jones, D.S., J. Inst. Math. Applies. 23, 421447 (1979).CrossRefGoogle Scholar
12Ma, Y., Varadan, V. K., and Varadan, V. V., J. Wave-Mater. Interact. 3, 243248 (1988).Google Scholar
13Ward, L., The Optical Constants of Bulk Materials and Films (Adam Hilger, Bristol, 1988).Google Scholar
14Lin, J. C., Guy, A. W., and Johnson, C. C., IEEE Trans. Microwave Theory Tech. 21, 791797 (1973).CrossRefGoogle Scholar
15Massoudi, H., Durney, C.H., and Johnson, C.C., IEEE Trans. Microwave Theory Tech. 23, 246253 (1975).Google Scholar
16Sihvola, A.H., private communication (Oct. 1990).Google Scholar
17Sihvola, A.H. and Lindell, I.V., J. Electromagn. Waves Applies. 5, 553572 (1991).Google Scholar
18Lakhtakia, A., Varadan, V.V., and Varadan, V.K., J. Opt. Soc. Am. A 6, 2326 (1989).CrossRefGoogle Scholar
19Lakhtakia, A., Varadan, V. K., and Varadan, V. V., Int. J. Electronics 36, 13851392 (1989).Google Scholar
20Harrington, R.F., Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1987).Google Scholar
21Varadan, V. V., Lakhtakia, A., and Varadan, V. K., J. Phys. A: Math. Gen. 20, 62596264 (1987).CrossRefGoogle Scholar
22Svedin, J. A. M., IEEE Trans. Microwave Theory Tech. 38, 14881496 (1990).CrossRefGoogle Scholar
23Bhattacharyya, A. K., Electron. Lett. 26, 10661067 (1990).CrossRefGoogle Scholar
24Cory, H. and Rosenhouse, I., Proc. IEEE, Part H 138, 5154 (1991).Google Scholar
25Engheta, N. and Pelet, P., Electron. Lett. 27, 56 (1991).CrossRefGoogle Scholar
26Lakhtakia, A., Varadan, V. V., and K, V.. Varadan, J. Opt. Soc. Am. A 6, 16751681 (1989); errata: 7, 568 (1990).CrossRefGoogle Scholar
27Ma, Y., Varadan, V. K., and Varadan, V. V., ASME J. Heat Transfer 112, 402407 (1990).CrossRefGoogle Scholar