Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T17:27:57.610Z Has data issue: false hasContentIssue false

Nonlinear indentation of fibers

Published online by Cambridge University Press:  15 December 2011

Quinn P. McAllister
Affiliation:
Center for Composite Materials, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716
John W. Gillespie Jr.*
Affiliation:
Center for Composite Materials, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716
Mark R. VanLandingham
Affiliation:
Weapons and Materials Research Directorate—Materials and Manufacturing Sciences Division, U.S. Army Research Laboratory, ATTN: RDRL-WMM-B, Aberdeen Proving Ground, Maryland 21005-5069
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An instrumented indentation method is established to accurately measure the local elastic-plastic material properties of a single fiber by accounting for the additional sources of compliance associated with fiber indentation. The Oliver-Pharr instrumented indentation data analysis method is compared for indentation of a standard, planar fused silica sample and in the radial direction of homogeneous, isotropic E-glass fibers of two different diameters. Compliance contributions from substrate deflection and other nonindentation-related fiber deflections are quantified and shown to be negligible. The added compliance observed is attributed to the lack of constraint due to the finite geometry of a curved fiber surface. This compliance contribution is accounted for by using a proposed area correction to capture the geometry of the curved fiber-probe contact combined with a structural compliance correction. Implementation of these corrections to experimental indentation curves results in accurate measurements of the fiber elastic modulus and hardness.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.ASTM D 3379–75: Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials. DOI: 10.1520/D3379-75R89E01. ASTM International, West Conshohocken, PA, 1989.CrossRefGoogle Scholar
2.Cheng, M., Chen, W.N., and Weerasooriya, T.: Mechanical properties of Kevlar(R) KM2 single fiber. J. Eng. Mater. Technol. 127, 197 (2005).CrossRefGoogle Scholar
3.Deteresa, S.J., Allen, S.R., Farris, R.J., and Porter, R.S.: Compressive and torsional behaviour of Kevlar 49 fibre. J. Mater. Sci. 19, 57 (1984).CrossRefGoogle Scholar
4.Kawabata, S.: Measurement of the transverse mechanical properties of high performance fibers. J. Text. Inst. 81, 432 (1990).CrossRefGoogle Scholar
5.Languerand, D.L., Zhang, H., Murthy, N.S., Ramesh, K.T., and Sansoz, F.: Inelastic behavior and fracture of high modulus polymeric fiber bundles at high strain-rates. Mater. Sci. Eng., A 500, 216 (2009).CrossRefGoogle Scholar
6.Leal, A.A., Deitzel, J.M., and Gillespie, J.W.: Assessment of compressive properties of high performance organic fibers. Compos. Sci. Technol. 67, 2786 (2007).CrossRefGoogle Scholar
7.Leal, A.A., Deitzel, J.M., and Gillespie, J.W.: Compressive strength analysis for high performance fibers with different modulus in tension and compression. J. Compos. Mater. 43, 661 (2009).CrossRefGoogle Scholar
8.Lee, K.G., Barton, R., and Schultz, J.M.: Structure and property development in poly(p-phenylene terephthalamide) during heat treatment under tension. J. Polym. Sci., Part B: Polym. Phys. 33, 1 (1995).CrossRefGoogle Scholar
9.Li, C.T. and Langley, N.R.: Improvement in fiber testing of high-modulus single filament materials. Commun. Am. Ceram. Soc. 68, C-202(1985).CrossRefGoogle Scholar
10.Rao, Y., Waddon, A.J., and Farris, R.J.: The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers. Polymer 42, 5925 (2001).CrossRefGoogle Scholar
11.Singletary, J., Davis, H., Ramasubramanian, M.K., Knoff, W., and Toney, M.: The transverse compression of PPTA fibers part I: Single fiber transverse compression testing. J. Mater. Sci. 35, 573 (2000).CrossRefGoogle Scholar
12.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
13.XP user’s manual. V. 16 (2002).Google Scholar
14.Hausrath, R.L. and Longobardo, A.V.: Chapter 5: High-strength glass fibers and markets, In Fiberglass and Glass Technology; Wallenberger, F.T. and Bingham, P.A. eds.; Springer Science + Business Media, LLC.: New York, 2010; p. 197.CrossRefGoogle Scholar
15.ASTM D 578–05: Standard specification for glass fiber strands. DOI: 10.1520/D0578_D0578M-05R11E01. ASTM International, West Conshohocken, PA, 2011.CrossRefGoogle Scholar
16.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
17.Samuels, L.E. and Mulhearn, T.O.: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125 (1957).CrossRefGoogle Scholar
18.Stan, G., Krylyuk, S., Davydov, A.V., Vaudin, M., Bendersky, L.A., and Cook, R.F.: Surface effects on the elastic modulus of Te nanowires. Appl. Phys. Lett. 91, 231908 (2008).Google Scholar
19.Feng, G., Nix, W.D., Yoon, Y., and Lee, C.J.: A study of the mechanical properties of nanowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006).CrossRefGoogle Scholar
20.Lonnroth, N., Muhlstein, C.L., Pantano, C., and Yue, Y.: Nanoindentation of glass wool fibers. J. Non-Cryst. Solids. 354, 3887 (2008).CrossRefGoogle Scholar
21.Tan, E.P.S. and Lim, C.T.: Nanoindentation study of nanofibers. Appl. Phys. Lett. 87, 123106 (2005).CrossRefGoogle Scholar
22.Cayer-Barrioz, J., Tonck, A., Mazuyer, D., Kapsa, P.H., and Chateauminois, A.: Nanoscale mechanical characterization of polymeric fibers. J. Polym. Sci., Part B: Polym. Phys. 43, 264 (2005).CrossRefGoogle Scholar
23.Wei, G., Bharat, B., and Torgerson, P.M.: Nanomechanical characterization of human hair using nanoindentation and SEM. Ultramicroscopy 105, 248 (2005).CrossRefGoogle ScholarPubMed
24.Li, X., Gao, H., Murphy, C.J., and Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003).CrossRefGoogle Scholar
25.Li, X., Bhushan, B., and McGinnis, P.B.: Nanoscale mechanical characterization of glass fibers. Mater. Lett. 29, 215 (1996).CrossRefGoogle Scholar
26.Chang, N.K., Lin, Y.S., Chen, C.Y., and Chang, S.H.: Size effect of indenter on determining modulus of nanowires using nanoindentation. Thin Solid Films 517, 3695 (2009).CrossRefGoogle Scholar
27.Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., and Stone, D.S.: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23, 1113 (2008).CrossRefGoogle Scholar
28.Jakes, J.E. and Stone, D.S.: The edge effect in nanoindentation. Philos. Mag. 91, 1387 (2011).CrossRefGoogle Scholar
29.Stone, D.S., Yoder, K.B., and Sproul, W.D.: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol., A. 9, 2543 (1991).CrossRefGoogle Scholar
30.Joslin, D.L. and Oliver, W.C.: A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123 (1990).CrossRefGoogle Scholar
31.Jakes, J.E.: Private communication. (2010).Google Scholar
32.Longobardo, A.V.: Private communication. (2010–2011).Google Scholar
33.VanLandingham, M.R., Juliano, T.F., and Hagon, M.J.: Measuring tip shape for instrumented indentation using atomic force microscopy. Meas. Sci. Technol. 16, 2173 (2005).CrossRefGoogle Scholar
34.Tai, K., Ming, D., Suresh, S., Palazoglu, A., and Ortiz, C.: Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454 (2007).CrossRefGoogle ScholarPubMed
35.Johnson, K.L.: Contact Mechanics, 1st ed. (Cambridge University Press, Cambridge, United Kingdom, 1985).CrossRefGoogle Scholar
36.Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids. 18, 115 (1970).CrossRefGoogle Scholar
37.Chen, J. and Bull, S.J.: On the relationship between plastic zone radius and maximum depth during nanoindentation. Surf. Coat. Technol. 201, 4289 (2006).CrossRefGoogle Scholar
38.Stilwell, N.A. and Tabor, D.: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).CrossRefGoogle Scholar
39.Chudoba, T. and Jennett, N.M.: Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. J. Phys. D: Appl. Phys. 41, 215407 (2008).CrossRefGoogle Scholar
40.Strader, J.H., Shim, S., Bei, H., Oliver, W.C., and Pharr, G.M.: An experimental evaluation of the constant β relating the contact stiffness to the contact area in nanoindentation. Philos. Mag. 86, 5285 (2006).CrossRefGoogle Scholar
41.Hertz, H.: On the contact of elastic solids. J. Reine Angew. Mathematik, 92, 156 (1882).CrossRefGoogle Scholar
42.Juliano, T., Gogotsi, Y., and Domnich, V.: Effect of indentation unloading conditions on phase transformation induced events in silicon. J. Mater. Res. 18, 1192 (2003).CrossRefGoogle Scholar
43.Juliano, T., Domnich, V., Buchheit, T., and Gogotsi, Y.: Numerical derivative analysis of load-displacement curves in depth-sensing indentation, In Mechanical Properties of Nanostructured Materials and Nanocomposites, Ovid’ko, I., Pande, C.S., Krishnamoorti, R., Lavernia, E., and Skandan, G. eds.; Mater. Res. Soc. Symp. Proc. 791; Pennsylvania, 2004, Q7.5.1.CrossRefGoogle Scholar