Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T09:05:21.306Z Has data issue: false hasContentIssue false

Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms

Published online by Cambridge University Press:  31 January 2011

Y. Gaillard
Affiliation:
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
M. Anglada
Affiliation:
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
E. Jiménez-Piqué*
Affiliation:
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
*
a) Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

This article presents a nanoindentation study of polycrystalline and single crystals of yttria-doped zirconia with both tetragonal and cubic phases. Analysis of the deformation mechanisms is performed by both atomic force microscopy (AFM) and micro-Raman spectroscopy. Phase transformation from tetragonal to monoclinic phase is clearly distinguished on tetragonal crystals, whereas in cubic crystals the plastic deformation seems to be controlled by dislocation nucleation and interactions. AFM observations in tetragonal zirconia grains have shown that both grain size and autocatalytic transformation strongly influence the size of the transformed zone. Furthermore, the martensitic phase transformation seems to be also strongly dependent of the indenter shape. Experimental results suggest that a critical contact pressure is necessary to induce the phase transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Messerschmidt, U., Baither, D., Baufeld, B., and Bartsch, M.: Plastic deformation of zirconia single crystals: A review. Mater. Sci. Eng., A 233, 61 (1997).CrossRefGoogle Scholar
2.Martinez-Fernandez, J., Jimenez-Melendo, M., Dominguez-Rodriguez, A., Cordier, P., Lagerlof, K.P.D., and Heder, A.H.: High temperature precipitation hardening in Y2O3 partially-stabilized ZrO2 (Y-PSZ) single crystals. III. Effect of solute composition and orientation on the hardening. Acta Metall. Mater. 43, 2469 (1995).CrossRefGoogle Scholar
3.Martinez-Fernandez, J., Jimenez-Melendo, M., and Dominguez-Rodriguez, A.: Microstructural evolution and stability of tetragonal precipitates in Y2O3 partially-stabilized ZrO2 single crystals. Acta Metall. Mater. 43, 593 (1995).CrossRefGoogle Scholar
4.Martinez-Fernandez, J., Jimenez-Melendo, M., Dominguez-Rodriguez, A., Heder, A.H., and Hayakawa, M.: An unusual twin structure in transformed precipitates in Y-PSZ single-crystals. J. Am. Cerarti. Soc. 77, 57 (1994).CrossRefGoogle Scholar
5.Srinivasan, G.V., Jue, J.F., Kuo, S.Y., and Virkar, A.V.: Ferroelastic domain switching in polydomain tetragonal zirconia single-crystals. J. Am. Ceram. Soc. 72, 2098 (1989).CrossRefGoogle Scholar
6.Garvie, R.C., Hannink, R.H., and Pascoe, R.T.: Ceramic steel? Nature 258, 703 (1975).CrossRefGoogle Scholar
7.Green, D.J., Hannink, R.H.J., and Swain, M.V.: Transformation Toughening Ceramics (CRC, Boca Raton, FL, 1989).Google Scholar
8.Catledge, S.A., Cook, M., Vohra, Y.K., Santos, E.M., McClenny, M.D., and Moore, K.D.: Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J. Mater. Sci.-Mater. Med. 14, 863 (2004).CrossRefGoogle Scholar
9.Deville, S., Chevalier, J., and El Attaoui, H.: Atomic force microscopy study and qualitative analysis of martensite relief in zirconia. J. Am. Ceram. Soc. 88 (5), 1261 (2005).CrossRefGoogle Scholar
10.Gaillard, Y., Jiménez-Piqué, E., Soldera, F., Mücklich, F., and Anglada, M.: Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Mater. 56 (16), 4206 (2008).CrossRefGoogle Scholar
11.Alcala, J.: Instrumented micro-indentation of zirconia ceramics. J. Am. Ceram. Soc. 83, 1977 (2000).CrossRefGoogle Scholar
12.Martinez Fernandez, J., Jiménez Melendo, M., Domínguez Rodriguez, A., and Heder, A.H.: Microindentation-induced transformation in 3.5-mol-percent-yttria-partially-stabilized zirconia single-crystals. J. Am. Ceram. Soc. 74, 1071 (1991).CrossRefGoogle Scholar
13.Chien, F.R., Ubic, F.J., Prakash, V., and Heuer, A.H.: Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals. Acta Mater. 46, 2151 (1998).CrossRefGoogle Scholar
14.Holmes, D., Heuer, A.H., and Pirouz, P.: Dislocation-structures around vickers indents in 9.4 mol-percent Y2O3-stabilized cubic ZrO2 single-crystals. Philos. Mag. A 67, 325 (1993).CrossRefGoogle Scholar
15.Farber, B.Y., Chiarelli, A.S., and Heuer, A.H.: A dislocation mechanism of crack nucleation in cubic zirconia single-crystals. Philos. Mag. A 70, 201 (1994).CrossRefGoogle Scholar
16.Farber, B.Y., Orlov, V.I., and Heuer, A.H.: Energy dissipation during high temperature displacement-sensitive indentation in cubic zirconia single crystals. Phys. Status Solidi A 166, 115 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
17.Morscher, G.N., Pirouz, P., and Heuer, A.H.: Temperature-dependence of hardness in yttria-stabilized zirconia single-crystals. J. Am. Ceram. Soc. 74, 491 (1991).CrossRefGoogle Scholar
18.Lian, J., Garay, J.E., and Wang, J.: Grain size and grain boundary effects on the mechanical behavior of fully stabilized zirconia investigated by nanoindentation. Scr. Mater. 56, 1095 (2007).CrossRefGoogle Scholar
19.Fujikane, M., Setoyama, D., Nagao, S., Nowak, R., and Yamanaka, S.: Nanoindentation examination of yttria-stabilized zirconia (YSZ) crystal. J. Alloys Compd. 431, 250 (2007).CrossRefGoogle Scholar
20.Domnich, V., Gogotsi, Y., and Trenary, M.: Identification of pressure-induced phase transformations using nanoindentation, in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q8.9.Google Scholar
21.Casellas, D., Feder, A., Llanes, L., and Anglada, M.: Fracture toughness and mechanical strength of Y-TZP/PSZ ceramics. Scr. Mater. 45, 213 (2001).CrossRefGoogle Scholar
22.Casellas, D., Cumbrera, F.L., Sánchez-Bajo, F., Forsling, W., Llanes, L., and Anglada, M.: Fracture toughness and mechanical strength of Y-TZP/PSZ ceramics. J. Eur. Ceram. Soc. 21, 765 (2001).CrossRefGoogle Scholar
23.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
24.Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., Gomez-Herrero, J., and Baro, A.M.: WSXM: A software for scanning-probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).CrossRefGoogle Scholar
25.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H., and Leipner, H.S.: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B: Condens. Matter. 67, 172101 (2003).CrossRefGoogle Scholar
26.Deville, S., El Attaoui, H., and Chevalier, J.: Atomic force microscopy of transformation toughening in ceria-stabilized zirconia. J. Eur. Ceram. Soc. 25, 3089 (2005).CrossRefGoogle Scholar
27.Galanov, B.A., Domnich, V., and Gogotsi, Y.: elastic–plastic contact mechanics of indentations accounting for phase transformations. Exp. Mech. 43, 303 (2003).Google Scholar
28.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000).CrossRefGoogle Scholar