Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T15:38:26.425Z Has data issue: false hasContentIssue false

Lattice site and photoluminescence of erbium implanted in α–Al2O3

Published online by Cambridge University Press:  31 January 2011

G. N. van den Hoven
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
A. Polman
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
E. Alves
Affiliation:
Dep. de Física, ITN, Estrada National 10, P-2685 Sacavém, Portugal
M. F. da Silva
Affiliation:
Dep. de Física, ITN, Estrada National 10, P-2685 Sacavém, Portugal
A. A. Melo
Affiliation:
Dep. de Física, ITN, Estrada National 10, P-2685 Sacavém, Portugal
J. C. Soares
Affiliation:
Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1699, Lisboa Codex, Portugal
Get access

Abstract

Single-crystal sapphire (α–Al2O3) was implanted at room temperature with 200 keV erbium ions to a fluence of 8 × 1013 cm–2. Ion channeling using 1.6 MeV He+ shows that the crystal suffers little damage for this low dose implant. Angular scans through axial and planar directions in the crystal indicate that 70% of the Er atoms reside on displaced octahedral sites in the α–Al2O3 lattice. As pure Al2O3 has a high density of free octahedral sites, this explains why high concentrations of Er can be dissolved in this material. Smaller fractions of Er are found on tetrahedral (20%) and random (10%) sites. The samples exhibit strongly peaked photoluminescence spectra around 1.5 μm, due to intra-4f transitions in Er3+, indicating the existence of well-defined sites for the luminescing Er3+ ions. It is concluded that the octahedral site is the dominating optically active site in the lattice.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Smit, M. K., Acket, G. A., and van der Laan, C. J., Thin Solid Films, Electronics and Optics 138, 171 (1986).Google Scholar
2.Smit, M. K., Integrated Optics in Silicon-Based Aluminum Oxide, Ph.D. Thesis, Optics Laboratory, Dept. of Applied Physics, Delft University of Technology (1991).Google Scholar
3.van den Hoven, G. N., Snoeks, E., Polman, A., van Uffelen, J. W. M., Oei, Y. S., and Smit, M. K., Appl. Phys. Lett. 62, 3065 (1993).CrossRefGoogle Scholar
4.van den Hoven, G. N., Koper, R. I. J. M., Polman, A., van Dam, C., van Uffelen, J. W. M., and Smit, M. K., Appl. Phys. Lett. 68, 1886 (1996).Google Scholar
5.Alves, E., Silva, M. F. da, van den Hoven, G. N., Polman, A., Melo, A. A., and Soares, J. C., Nucl. Instrum. Methods B 106, 429 (1995).Google Scholar
6.Hüfner, S., Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).Google Scholar
7.White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41 (1989).Google Scholar
8.Rebouta, L., Smulders, P. J. M., Boerma, D. O., Agulló-López, F., DaSilva, M. F., and Soares, J. C., Phys. Rev. B 48, 3600 (1993).CrossRefGoogle Scholar
9.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1986), pp. 1047, 2177, and references therein.Google Scholar
10.Marcus, M. A. and Polman, A., J. Non-Cryst. Solids 136, 260 (1991).CrossRefGoogle Scholar