Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T18:01:21.922Z Has data issue: false hasContentIssue false

Interface between gold and superconducting YBa2Cu3O7−x

Published online by Cambridge University Press:  03 March 2011

Siu-Wai Chan
Affiliation:
Department of Chemical Engineering, Materials Science and Mining Engineering, Henry Krumb School of Mines. Columbia University, New York, New York 10027
Lie Zhao
Affiliation:
Department of Chemical Engineering, Materials Science and Mining Engineering, Henry Krumb School of Mines. Columbia University, New York, New York 10027
C. Chen
Affiliation:
Department of Chemical Engineering, Materials Science and Mining Engineering, Henry Krumb School of Mines. Columbia University, New York, New York 10027
Qi Li
Affiliation:
AFR, Inc., East Hariford, Connecticut 06108
D.B. Fenner
Affiliation:
AFR, Inc., East Hariford, Connecticut 06108
Get access

Abstract

Gold (Au) and silver (Ag) are known to be important contact metals on YBa2Cu3O7−x (YBCO). Both metals have been used as additives in fabricating tapes of YBCO and Bi2Sr2CaCu2O8 (BSCCO) materials, and have favorable results in improving not only the flexibility but also the weighted critical currents of the resulting composites. Previous results on superconductor/normal metal/superconductor junctions made using YBCO/Au/YBCO and YBCO/Au/Nb demonstrated that a supercurrent can be induced in the normal metal layers through the proximity effect. Our transmission electron microscopy study of the Au/YBCO interfaces shows a well-bonded interface with no extraneous phases present. Lattice fringes of the (001) plane in YBCO terminated at the interface abruptly. This observation supports previous results of contact resistance of x-ray photoelectron spectroscopy (XPS). Both (001) integral steps and multiples of 1/3 (001) steps were observed at the Au/YBCO interface. When the top gold layer was absent locally, surface degradation was observed as the (001) lattice fringes stopped short from the surface by 10 nm. Our results support that Au is a desirable contact metal and a dependable surface passivation material for YBCO.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ma, Q. Y., Schmidt, M. T., Weinman, L. S., Yang, E. S., Sampere, S. M., and Chan, S-W., J. Vacuum Sci. Technol. A 9, 390 (1991).CrossRefGoogle Scholar
2Heine, K., Tenbrink, J., and Thoener, M., Appl. Phys. Lett. 55, 24412443 (1989).CrossRefGoogle Scholar
3Osamura, K., Takayama, T., and Ochial, S., Supercond. Sci. Technol. 2, 107 (1989).CrossRefGoogle Scholar
4Murakami, M., in Studies of High Temperature Superconductors, edited by Narikar, A.V. (Nova Science Publishers, Tokyo, 1991).Google Scholar
5L. J. Masur, Podtburg, E. R., Craven, C. A., Otto, A., Wang, Z. L., Kroeger, D. M., Coulter, J. Y., and Maley, M. P., Physica C 230, 274 (1994).Google Scholar
6Tzeng, Y., Holt, A., and Ely, R., Appl. Phys. Lett. 52, 155 (1988); Ekin, J. W., Panson, A. J., and Blankenship, B. A., Appl. Phys. Lett. 52, 331 (1988); Ekin, J.W., Larson, T. M., Bergen, N. F., Nelson, A. J., Swartzlander, A. B., Kazmerski, L. L., Panson, A. J., and Blankenship, B. A., Appl. Phys. Lett. 52, 1819 (1988).CrossRefGoogle Scholar
7Kaiser, D. L., Holtzberg, F., Chisholm, M. F., and Worthington, T. K., J. Cryst. Growth 85, 593 (1987).CrossRefGoogle Scholar
8Mankiewich, P. M., Schwartz, D. B., Howard, R. E., Jackel, L. D., Straughn, B. L., Burkhardt, E. G., and Dayem, A.H., 5th Int. Workshop on Future Electron Devices—High Temperature Superconducting Electron Devices-(FED HiTcSc-ED WORK- SHOP), June 2–4, 1988, MIyagi-ZAo, pp. 157160; Manluewich, P. M.et al., IEEE Magn. 25(1990); Greene, L.H., Barner, J. B, Feldmann, W. L., Farrow, L. A., Miceli, P. F., Ramesh, R., Wilkens, B. J., Bagley, B. G., Tarascon, J. M., Wernick, J. H., Giroud, M., and Rowell, J.M., Physica C 162164, 1573(1989); Ono, R. H., Beall, J. A., Cromar, M. W., Harvey, T. E., Johansson, M. E., Reintsema, C. D., and Rudman, D. A., Appl. Phys. Lett. 59, 1126 (1991).Google Scholar
9Li, Q., Fenner, D. B., Hamblen, W. D., and Hamblen, D. G., Appl. Phys. Lett. 62, 2428 (1993); Fenner, D. B., Li, Q., Hamblen, W. D., Johansson, M. E., Hamblen, D. G., Lynds, L., and Budnick, J. I., IEEE Trans. Appl. Supercon. 3, 2104 (1993).CrossRefGoogle Scholar
10Chan, S-W., Hwang, D. M., and Nazar, L., J. Appl. Phys. 65, 4719 (1989).CrossRefGoogle Scholar
11Feng, Y., Larbalestier, D. C., Babcock, S. E., and Vander Sande, J. B., Appl. Phys. Lett. 61, 1234 (1992).CrossRefGoogle Scholar
12Chan, S-W., J. Phys. Chem. Solids 55, 1415 (1994).CrossRefGoogle Scholar
13Marshall, A. F. and Ramah, R., in Interfaces in High-Tc Super-conducting systems, edited by Shinde, S.L. and Rudman, D. A. (Springer-Verlag, New York, 1994), p. 71.CrossRefGoogle Scholar
14Pendrick, V., Brown, R., Matey, J. R., Findikoglu, A., Xi, X. X., Venkatesan, T., and Inam, A., J. Appl. Phys. 69, 7927 (1991).CrossRefGoogle Scholar
15Ekin, J. W., Russek, S. E., Clickner, C. C., and Jeanneret, B., Appl. Phys. Lett. 62, 369 (1993).CrossRefGoogle Scholar
16Contact resistivity1 of Au/YBCO interfaces from an ex situ process was reported to be 8.6 × 10–3 Ω cm2 at 300 K and 4.9 × 10–5 Ω cm2 at 77 K, while a lower value13 of 2.6 × 10–7 Ω cm2 at 79 K with oxygen anneal from an exsitu process and even a lower contact resistivity14 in the range of 10–8 – 10–9 Ω cm2 at 4 K from an in situ process without oxygen anneal had been reported.Google Scholar