Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:18:35.810Z Has data issue: false hasContentIssue false

In situ observation of solidification of undercooled hypoeutectic Ni–Ni3B alloy melt

Published online by Cambridge University Press:  26 June 2013

Junfeng Xu
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, Xi’an Shaanxi 710072, People’s Republic of China; andDepartment of Metal Material Engineering, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032, People’s Republic of China
Feng Liu*
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, Xi’an Shaanxi 710072, People’s Republic of China; andDepartment of Metal Material Engineering, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032, People’s Republic of China
Di Zhang
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, Xi’an Shaanxi, 710072, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Solidification of undercooled Ni–3.3 wt% B alloy melt was investigated by glass fluxing. If ΔTe < 140 ± 10 K, two recalescences appear, indicating that stable eutectic reaction occurs; if ΔTe ≥ 140 ± 10 K, three recalescences can be observed, indicating that metastable eutectic reaction occurs. Analysis indicates that the phase fractions of the as-solidified structure can be predicted by the recalescence delay times in the cooling curves. High-speed video images show that the solidification interface of primary solidification changes from single dendritic shape to spherical shape with increasing ΔTp; the interface of eutectic solidification changes from many small “dendrites” to a single large one with increasing ΔTe; the interface of residual liquid solidification changes from many small rings to a single large one with increasing ΔTr. The growth velocity of eutectic solidification suggests a coupled growth at small and moderate undercoolings and decoupled growth at large undercooling, whereas that of residual liquid solidification cannot be interpreted by the available models.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, K., Liu, F., Xu, J.F., and Yang, G.C.: Phase selection and microstructure evolution in nonequilibrium solidification of Fe40Ni40B20 alloy. Metall. Mater. Trans. A 43, 1578 (2012).Google Scholar
Koseki, T.: Undercooling and rapid solidification of Fe-Cr-Ni ternary alloys. Ph.D. Thesis, Massachusetts Institute of Technology, MA, 1994.Google Scholar
Nagashio, K., Kuribayashi, K., and Takamura, Y.: Phase selection of peritectic phase in Nd-based superconducting oxides. Acta Mater. 48, 3049 (2000).CrossRefGoogle Scholar
Funke, O., Phanikumar, G., Galenko, P.K., Chernova, L., Reutzel, S., Kolbe, M., and Herlach, D.M.: Dendrite growth velocity in levitated undercooled nickel melts. J. Cryst. Growth 297, 211 (2006).CrossRefGoogle Scholar
Bassler, B.T., Hofmeister, W.H., Bayuzick, R.J., Gorenflo, R., Bergman, T., and Stockum, L.: Observation of alloy solidification using high speed video. Rev. Sci. Instrum. 63, 3466 (1992).Google Scholar
Biswas, K., Phanikumar, G., Chattopadhyay, K., Volkmann, T., Funke, O., Holland-Moritz, D., and Herlach, D.M.: Rapid solidification behavior of undercooled levitated Fe–Ge alloy droplets. Mater. Sci. Eng., A 375377, 464 (2004).Google Scholar
Chen, Y.Z., Yang, G.C., Liu, F., Liu, N., Xie, H., and Zhou, Y.H.: Microstructure evolution in undercooled Fe-7.5 at.% Ni alloys. J. Cryst. Growth 282, 490 (2005).CrossRefGoogle Scholar
Wei, B., Herlach, D.M., Feuerbacher, B., and Sommer, F.: Dendritic and eutectic solidification of undercooled Co-Sb alloys. Acta Metall. Mater. 41, 1801 (1993).Google Scholar
Li, J.F., Li, X.L., Liu, L., and Lu, S.Y.: Mechanism of anomalous eutectic formation in the solidification of undercooled Ni–Sn eutectic alloy. J. Mater. Res. 23, 2139 (2008).Google Scholar
Yang, C., Liu, F., Yang, G., Chen, Y., Liu, N., and Zhou, Y.: Microstructure and phase selection in bulk undercooled Fe–B eutectic alloys. J. Alloys Compd. 441, 101 (2007).Google Scholar
Leonhardt, M., Loser, W., and Lindenkreuz, H.G.: Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts. Acta Mater. 47, 2961 (1999).Google Scholar
Xu, J.F., Liu, F., and Dang, B.: Phase selection in undercooled Ni-3.3 Wt Pct B alloy melt. Metall. Mater. Trans. A 44, 1401 (2013).CrossRefGoogle Scholar
Masoud, N.S., Ali, R.K., Mahboobeh, N.S., Roohallah, M., and Saber, N.: Thermokinetic study on the phase evolution of mechanically alloyed Ni–B powders. J. Therm. Anal. Calorim. 107, 265 (2012).Google Scholar
Binder, S., Kolbe, M., Klein, S., and Herlach, D.M.: Solidification of tetragonal Ni2B from the undercooled melt. Europhys. Lett. 97, 36003 (2012).Google Scholar
Ajao, J., Hamar-Thibault, S., and Thibault-Desseaux, J.: Structure observations by high-resolution electron microscopy of Ni-B melt-spun alloys (B<30at.%). J. Mater. Sci. 24, 3647 (1989).Google Scholar
Ajao, J. and Hamar-Thibault, S.: Influence of additions on the solidification behavior of Ni-B alloys - crystallography of Ni-Ni3B eutectic. J. Mater. Sci. 23, 1112 (1988).Google Scholar
Baricco, M., Ferrari, E., and Battezzati, L.: Undercooling experiments in a high temperature differential scanning calorimeter, in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J.S., Park, B., Greer, A.L., and Stephenson, G.B. (Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996) p. 81.Google Scholar
Battezzati, L., Antonione, C., and Baricco, M.: Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams. J. Alloys Compd. 247, 164 (1997).Google Scholar
Aoyama, T. and Kuribayashi, K.: Rapid solidification process of semiconductor from highly undercooled melts. Mater. Sci. Eng., A 304306, 231 (2001).CrossRefGoogle Scholar
Nagashio, K., Li, M., and Kuribayashi, K.: Containerless solidification and net shaping by splat quenching of undercooled Nd2Fe14B melts. Mater. Trans. 44, 853 (2003).Google Scholar
Nozaki, K., Nagashio, K., and Kuribayashi, K.: In-situ observation of solidification behavior from undercooled α-Fe2Si5 melt using an electromagnetic levitator. Rev. Adv. Mater. Sci. 18, 439 (2008).Google Scholar
Löser, W., Woodcock, T.G., Shuleshova, O., Hermann, R., Lindenkreuz, H.G., Gehrmann, B., Schneider, S., and Volkmann, T.: Metastable solidification in undercooled liquid droplets of Fe-Ni based soft-magnetic alloys under terrestrial and microgravity conditions. J. Phys. Conf. Ser. 327, 012005 (2011).Google Scholar
Levi, C.G. and Mehrabian, R.: Heat flow in atomized droplets. Metall. Trans. B 11B, 21 (1980).Google Scholar
Levi, C.G. and Mehrabian, R.: Heat flow during rapid solidification of undercooled metal droplets. Metall. Trans. A 13A, 221 (1982).Google Scholar
Barth, M., Joo, F., Wei, B., and Herlach, D.M.: Measurement of the enthalpy and the specific heat of undercooled nickel and iron melts. J. Non-Cryst. Solids 156158, 398 (1993).Google Scholar
Çetin, A. and Kalkanli, A.: Evaluation of latent heat of solidification of gray cast iron from cooling curves. Can. Metall. Q. 44, 1 (2005).Google Scholar
Gibbs, J.W., Kaufman, M.J., Hackenberg, R.E., and Mendez, P.F.: Cooling curve analysis to determine phase fractions in solid-state precipitation reactions. Metall. Mater. Trans. A 41A, 2216 (2010).Google Scholar
Gibbs, J.W. and Mendez, P.F.: Solid fraction measurement using equation-based cooling curve analysis. Scr. Mater. 58, 699 (2008).Google Scholar
Xu, J.F., Liu, F., Xu, X.L., and Chen, Y.Z.: Determination of solid fraction from cooling curve. Metall. Mater. Trans. A 43A, 1268 (2012).Google Scholar
Krivilyov, M., Volkmann, T., Gao, J., and Fransaer, J.: Multiscale analysis of the effect of competitive nucleation on phase selection in rapid solidification of rare-earth ternary magnetic materials. Acta Mater. 60, 112 (2012).Google Scholar
Tourret, D., Gandin, C-A., Volkmann, T., and Herlach, D.M.: Multiple non-equilibrium phase transformations: Modeling versus electro-magnetic levitation experiment. Acta Mater. 59, 4665 (2011).Google Scholar
Suzuki, M., Piccone, T.J., and Flemings, M.C.: Measurements of rapid solidification rate in highly undercooled melts with a video system. Metall. Mater. Trans. A 22A, 2825 (1991).Google Scholar
Eckler, K., Herlach, D.M., and Aziz, M.J.: Search for a solute-drag effect in dendritic solidification. Acta Metall. Mater. 42, 975 (1994).Google Scholar
Eckler, K., Cochrane, R.F., Herlach, D.M., Feuerbacher, B., and Jurisch, M.: Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys. Phys. Rev. B 45, 5019 (1992).Google Scholar
Scientific Group Thermodata Europe (SGTE), Franke, P., and Neuschütz, D.: B-Ni, Franke, P. and Neuschütz, D. ed.; SpringerMaterials-The Landolt-Börnstein Database (http://www.springermaterials.com). DOI: 10.1007/10757405_11 Google Scholar
Diplas, S., Lehrmann, J., Jørgensen, S., Våland, T., and Taftø, J.: A study of the alloying behavior of Ni-B amorphous catalysts using Auger parameter measurements, and primary and secondary features of the XPS spectrum. Philos. Mag. 85, 981 (2005).Google Scholar
Turnbull, D.: Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022 (1950).Google Scholar
Li, M. and Kuribayashi, K.: Nucleation controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts. Metall. Mater. Trans. A 34, 2999 (2003).Google Scholar
Trivedi, R., Magnin, P., and Kurz, W.: Theory of eutectic growth under rapid solidification conditions. Acta Metall. 35, 971 (1987).Google Scholar
Li, J.F. and Zhou, Y.H.: Eutectic growth in bulk undercooled melts. Acta Mater. 53, 2351 (2005).Google Scholar
Li, M. and Kuribayashi, K.: Further discussion on the free growth behavior in the solidification of undercooled eutectic melts. Metall. Mater. Trans. A 34A, 1393 (2003).Google Scholar

Xu et al. supplementary movie

Movie 1

Download Xu et al. supplementary movie(Video)
Video 1.8 MB

Xu et al. supplementary movie

Movie 2

Download Xu et al. supplementary movie(Video)
Video 2.2 MB

Xu et al. supplementary movie

Movie 3

Download Xu et al. supplementary movie(Video)
Video 1.3 MB

Xu et al. supplementary movie

Movie 4

Download Xu et al. supplementary movie(Video)
Video 241.2 KB

Xu et al. supplementary movie

Movie 5

Download Xu et al. supplementary movie(Video)
Video 2.7 MB

Xu et al. supplementary movie

Movie 6

Download Xu et al. supplementary movie(Video)
Video 482.8 KB

Xu et al. supplementary movie

Movie 7

Download Xu et al. supplementary movie(Video)
Video 2.1 MB

Xu et al. supplementary movie

Movie 8

Download Xu et al. supplementary movie(Video)
Video 849.4 KB

Xu et al. supplementary movie

Movie 9

Download Xu et al. supplementary movie(Video)
Video 1.4 MB

Xu et al. supplementary movie

Movie 10

Download Xu et al. supplementary movie(Video)
Video 502.9 KB

Xu et al. supplementary movie

Movie 11

Download Xu et al. supplementary movie(Video)
Video 539.2 KB

Xu et al. supplementary movie

Movie 12

Download Xu et al. supplementary movie(Video)
Video 1.5 MB

Xu et al. supplementary movie

Movie 13

Download Xu et al. supplementary movie(Video)
Video 1.3 MB

Xu et al. supplementary movie

Movie 14

Download Xu et al. supplementary movie(Video)
Video 10.5 MB

Xu et al. supplementary movie

Movie 15

Download Xu et al. supplementary movie(Video)
Video 214 KB