Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T06:41:12.317Z Has data issue: false hasContentIssue false

Identification of oxidation mechanisms in silicon nitride ceramics by transmission electron microscopy studies of oxide scales

Published online by Cambridge University Press:  03 March 2011

M. Backhaus-Ricoult
Affiliation:
Laboratoire de Physique des Matériaux, CNRS, I PlA. Briand, 92195 Meudon, France
Yu. G. Gogotsi
Affiliation:
Center for Materials Research, University of Oslo. Gaustadalléen 21, N-0371 Oslo, Norway
Get access

Abstract

Additive-free HIPSN and Y2O3 + Al2O3-doped HPSN are oxidized in air in the temperature range from 1300 to 1500 °C. TEM, SEM, EDS, and XRD are used to analyze the composition and microstructure of the oxide scales in order to determine the oxidation mechanisms. HIPSN exhibits excellent resistance to oxidation in air at temperatures up to 1480 °C due to the formation of a protective silica (cristobalite) scale. No formation of Si2N2O and oxygen-enriched β'-Si3N4 under the silica layer is observed for materials densified without additives. Oxidation rates of additive-containing HPSN are more important due to the formation of a viscous aluminosilicate phase, which easily penetrates along the grain boundaries in the material. Silicon nitride grains in contact with the viscous phase first become enriched in aluminum and oxygen and are then dissolved in the glassy phase. No Si2N2O intermediate layer is formed. The finding of the decisive role of the aluminosilicate in the oxidation process allows one to explain inconsistencies observed in the oxidation kinetics of silicon nitride ceramics. Effects of sintering additives, WC contamination and temperature on the oxidation mechanisms, and structure of oxide scales are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Luthra, K.L., J. Am. Ceram. Soc. 74, 1095 (1991).CrossRefGoogle Scholar
2Andrews, P. and Riley, F.L., J. Europ. Ceram. Soc. 7, 125 (1991).CrossRefGoogle Scholar
3Hasegawa, Y., Tanaka, H., Tsutsumi, M., and Suzuki, H., Yogyo-Kyokai-Shi 88, 292 (1980).CrossRefGoogle Scholar
4Quackenbush, C. L. and Smith, J. T., Am. Ceram. Soc. Bull. 59, 533 (1980).Google Scholar
5Govila, R.K., Int. J. High Tech. Ceram. 3, 179 (1987).CrossRefGoogle Scholar
6Nickel, K. G., Danzer, R., Schneider, G., and Petzow, G., in Symp. Materialforschung, September 12-19, 1988, Hamm/Westfallen (1988), p. 611.Google Scholar
7Wakamatsu, M., Takeuchi, N., Shimuzu, S., Hattori, T., Oyama, M., Nanri, H., and Ishida, S., in Composites/Corrosion-Coating of Advanced Materials, edited by Kimura, S., Kobayashi, A., Umekawa, S., Nii, K., Saito, Y., and Yoshimura, M. (Mater. Res. Soc. Int. Symp. Proc. IMAM–4, Pittsburgh, PA, 1989), p. 283.Google Scholar
8Echeberria, J. and Castro, F., in Proc. 11th Risø Int. Symp. on Metallurgy and Materials Science, edited by Bentzen, J.J., Bilde-Sørenson, J.B., Chrishansen, N., Hovsewell, A., and Ralph, B. (Roskilde, 1990), p. 249.Google Scholar
9Bellosi, A., Babini, G.N., Li-Ping, H., and Xi-Ren, F., Mat. Chem. Phys. 26, 21 (1990).CrossRefGoogle Scholar
10Kim, H-E. and Moorhead, A.J., J. Am. Ceram. Soc. 73, 1443 (1990).CrossRefGoogle Scholar
11Gogotsi, Yu. G., Grigorjew, O. N., and Jaroschenko, V. P., Silikattechnik 41, 156 (1990).Google Scholar
12Du, H., Tressler, R.E., Spear, K.E., and Pantano, C. G., J. Electrochem. Soc. 136, 1527 (1989).CrossRefGoogle Scholar
13Andrews, P. and Riley, F.L., J. Europ. Ceram. Soc. 5, 245 (1989).CrossRefGoogle Scholar
14Jacobson, N. S., J. Am. Ceram. Soc. 76, 3 (1993).CrossRefGoogle Scholar
15Persson, J., Ekström, T., Käil, P-O., and Nygren, M., J. Europ. Ceram. Soc. 11, 363 (1993).CrossRefGoogle Scholar
16Persson, J. and Nygren, M., J. Europ. Ceram. Soc. 13, 467 (1994).CrossRefGoogle Scholar
17Persson, J., Käil, P. O., Nygren, M., J. Europ. Ceram. Soc. 12, 177 (1993).CrossRefGoogle Scholar
18Ogbuji, L.U.J.T. and Smialek, J., J. Electrochem. Soc. 138, L51 (1991).Google Scholar
19Chen, J., Sjöberg, J., Lindqvist, O., O'Meara, C., and Pejrid, L., J. Europ. Ceram. Soc. 7, 319 (1991).CrossRefGoogle Scholar
20Imai, K., Hirata, H., and Okabe, N., in High-Temperature Corrosion of Advanced Materials and Coatings, edited by Saito, Y., Önay, B., and Haruyama, T. (Elsevier, Amsterdam, 1992), p. 335.CrossRefGoogle Scholar
21O'Meara, C., Sjöberg, J., Dunlop, G., and Pompe, R., J. Europ. Ceram. Soc. 7, 369 (1991).CrossRefGoogle Scholar
22Ogbuji, L. U. J. T., in Proc. 49th Annual Meeting of the Electron Microscopy Society of America (San Francisco Press, San Francisco, CA, 1991), p. 1120.Google Scholar
23Backhaus-Ricoult, M., Eveno, P., and Castaing, J., in Plastic Deformation of Ceramics, edited by Bradt, R., Brooks, C., and Routbort, J. (Plenum Press, New York, 1994).Google Scholar
24Gogotsi, Yu. G., Grathwohl, G., Thümmler, F., Yaroshenko, V. P., Herrmann, M., and Taut, Ch., J. Europ. Ceram. Soc. 11, 375 (1993).CrossRefGoogle Scholar
25O'Reilly, M. and Fordham, R.J., JRC Petten News Bulletin 4, 11-12 (1993).Google Scholar
26Ogbuji, L.U.J.T., J. Am. Ceram. Soc. 75, 2995 (1992).CrossRefGoogle Scholar
27Clarke, D. R. and Lange, F. F., J. Am. Ceram. Soc. 63, 586 (1980).CrossRefGoogle Scholar
28Ogbuji, L. U. T. and Jayne, D. T., J. Electrochem. Soc. 140, 759 (1993).CrossRefGoogle Scholar
29Bondar, A. and Galakhov, F.Ya., Izv. Akad. Nauk SSSR, Ser. Khim. 7, 1325 (1963).Google Scholar
30Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley, New York, 1976).Google Scholar
31Taut, Ch., Herrmann, M., Große, G., Thiele, P., and Gogotsi, Yu., J. Europ. Ceram. Soc. 13, 239 (1994).CrossRefGoogle Scholar
32Pomeroy, M.J., Ramesh, R., and Hampshire, S., in Key Engineering Materials (Trans Tech Publ., Bay Village, OH, 1994), Vols. 89–91, p. 283.Google Scholar
33Gogotsi, Y. G. and Lavrenko, V. A., Corrosion of High-Performance Ceramics (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
34Gogotsi, Yu. G., Grathwohl, G., Porz, F., Kovylyaev, V.V., and Vasil'ev, A. D., in Microscopy of Oxidation 2, edited by Newcomb, S.B. and Bennett, M. J. (Institute of Materials, 1993), p. 535.Google Scholar
35Biswas, S. K., Mukerji, J., and Das, P. K., in Key Engineering Materials (Trans Tech Publ., Bay Village, OH, 1994), Vols. 89–91, p. 271.Google Scholar
36Jack, K. H., in High Temperature Chemistry of Inorganic and Ceramic Materials, edited by Glasser, F. P. and Potter, P. E. (The Chemical Society, London, 1976), p. 204.Google Scholar
37Emstberger, U., Grathwohl, G., and Thümmler, F., Int. J. High Tech. Ceram. 3, 43 (1987).CrossRefGoogle Scholar
38Backhaus-Ricoult, M., J. Am. Ceram. Soc. 74, 1793 (1991).CrossRefGoogle Scholar
39Kai, W., Yang, J-M., Shih, C.J., and Ezis, A., J. Mater. Sci. 27, 3706 (1992).CrossRefGoogle Scholar
40Barrett, L. R., in High Temperature Chemistry of Inorganic and Ceramic Materials, edited by Glasser, F. P. and Potter, P. E. (The Chemical Society, London, 1976), p. 89.Google Scholar
41Themelin, L., Desmaison-Brut, M., and Billy, M., J. Phys. IV, Col. C9 3, 881 (1993).Google Scholar
42Williams, R.O. and Tennery, V.J., J. Mater. Sci. 14, 1567 (1979).CrossRefGoogle Scholar
43Voitovich, R. F., Oxidation of Carbides and Nitrides (Kiev, Naukova Dumka, 1981), p. 84 (in Russian).Google Scholar