Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:08:26.088Z Has data issue: false hasContentIssue false

Hall–Petch relationship in pulsed-laser deposited nickel films

Published online by Cambridge University Press:  03 March 2011

J.A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1056
D.M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1056
Get access

Abstract

Thin-film mechanical properties can be measured using nanoindentation combined with detailed finite element modeling. This technique was used for a study of very fine grained Ni films, formed using pulsed-laser deposition on fused silica, sapphire, and Ni substrates. The grain sizes in the films were characterized by electron microscopy, and the mechanical properties were determined by ultra-low load indentation, analyzed using finite element modeling to separate the mechanical properties of the thin layers from those of the substrates. Some Ni films were deposited at high temperature or annealed after deposition to enlarge the grain sizes. The observed hardnesses and grain sizes in these thin Ni films are consistent with the empirical Hall–Petch relationship for grain sizes ranging from a few micrometers to as small as 10 nm, suggesting that deformation occurs preferentially by dislocation movement even in such nanometer-size grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pharr, G.M. and Oliver, W.C., MRS Bull. 17 28 (1992).CrossRefGoogle Scholar
2.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
3.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 601 (1986).CrossRefGoogle Scholar
4.Knapp, J.A., Myers, S.M., Follstaedt, D.M. and Petersen, G.A., J. Appl. Phys. 86 6547 (1999).CrossRefGoogle Scholar
5.Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C. and Friedmann, T.A., J. Appl. Phys. 85 1460 (1999).CrossRefGoogle Scholar
6.Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C., Friedmann, T.A., Ager, J.W., Monteiro, O.R. and Brown, I.G., Surf. Coat. Technol. 104 268 (1998).CrossRefGoogle Scholar
7.Myers, S.M., Knapp, J.A., Follstaedt, D.M. and Dugger, M.T., J. Appl. Phys. 83 1256 (1998).CrossRefGoogle Scholar
8.Knapp, J.A., Follstaedt, D.M., Barbour, J.C. and Myers, S.M., Nucl. Inst. Meth. B 127 935 (1997).CrossRefGoogle Scholar
9.Knapp, J.A., Follstaedt, D.M. and Myers, S.M., Int. J. Damage Mech. 12 377 (2003).CrossRefGoogle Scholar
10.Hall, E.O., Phys. Soc. London B 64 747 (1951).CrossRefGoogle Scholar
11.Petch, N.J., J. Iron Steel Inst. 174 25 (1953).Google Scholar
12.Xiao, C., Mirshams, R.A., Whang, S.H. and Yin, W.M., Mater. Sci. Eng. A 301 35 (2001).CrossRefGoogle Scholar
13.Torre, F. Dalla, Swygenhoven, H. Van and Victoria, M., Acta Mater. 50, 3957 (2002).CrossRefGoogle Scholar
14.Lebedev, A.B., Burenkov, Yu.A., Kopylov, V.I., Romanov, A.E. and Gryaznov, V.G., Philos. Mag. Lett. 73 241 (1996).CrossRefGoogle Scholar
15.Hughes, G.D., Smith, S.D., Pande, C.S., Johnson, H.R. and Armstrong, R.W., Scr. Metall. 20 93 (1986).CrossRefGoogle Scholar
16.Erb, U., El-Sherik, A.M., Palumbo, G. and Aust, K.T., Nanostruct. Mater. 2 383 (1993).CrossRefGoogle Scholar
17.El-Sherik, A.M., Erb, U., Palumbo, G. and Aust, K.T., Scr. Metall. Mater. 27 1185 (1992).CrossRefGoogle Scholar
18.Nieman, G.W., Weertman, J.R. and Siegel, R.W., Nanostruct. Mater. 1 185 (1992).CrossRefGoogle Scholar
19.Suryanarayana, C., Mukhopadhyay, D., Patankar, S.N. and Froes, F.H., J. Mater. Res. 7 2114 (1992).CrossRefGoogle Scholar
20.Suryanarayana, C. and Froes, F.H., Metall. Trans. A 23A 1071 (1992).CrossRefGoogle Scholar
21.Schuh, C.A., Nieh, T.G. and Yamasaki, T., Scr. Mater. 46 735 (2002).CrossRefGoogle Scholar
22.Agnew, S.R., Elliott, B.R., Youngdahl, C.J., Hemker, K.J. and Weertman, J.R., Mater. Sci. Eng. A 285 391 (2000).CrossRefGoogle Scholar
23.Weertman, J.R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R. and Van Swygenhoven, H., MRS Bull. 24 (1999).CrossRefGoogle Scholar
24.Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A. and Wang, P., Acta Mater. 51 387 (2003).CrossRefGoogle Scholar
25.Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R. and Hemker, K.J., Philos. Mag. A 80 1017 (2000).CrossRefGoogle Scholar
26.Ebrahimi, F., Bourne, G.R., Kelly, M.S. and Matthews, T.E., Nanostruct. Mater. 11 343 (1999).CrossRefGoogle Scholar
27.Mitra, R., Hoffman, R.A., Madan, A. and Weertman, J.R.J. Mater. Res. 16 1010 (2001).CrossRefGoogle Scholar
28.Van Swygenhoven, H., Caro, A. and Farkas, D., Scr. Mater. 44 1513 (2001).CrossRefGoogle Scholar
29.Nazarov, A.A., Scr. Mater. 34 697 (1996).CrossRefGoogle Scholar
30.Gryaznov, V.G., Gutkin, M.Yu., Romanov, A.E. and Trusov, L.I., J. Mater. Sci. 28 4359 (1993).CrossRefGoogle Scholar
31.Masumura, R.A., Hazzledine, P.M. and Pande, C.S., Acta Mater. 46 4527 (1998).CrossRefGoogle Scholar
32.Yamasaki, T., Schlossmacher, P., Ehrlich, K. and Ogino, Y., Nanostruct. Mater. 10 375 (1998).CrossRefGoogle Scholar
33.Van Petegem, S., Torre, F. Dalla, Segers, D. and Van Swygenhoven, H.Scr. Mater. 48 17 (2003).CrossRefGoogle Scholar
34.Follstaedt, D.M., Myers, S.M., Knapp, J.A., Dugger, M.T. and Christenson, T.A., Surf. Coat. Technol. 104 40 (1998).CrossRefGoogle Scholar
35.Buchheit, T.E., LaVan, D.A., Michael, J.R., Christenson, T.R. and Leith, S.D., Metall. Mater. Trans. A 33A 539 (2002).CrossRefGoogle Scholar
36.Knapp, J.A., Follstaedt, D.M. and Myers, S.M., J. Appl. Phys. 79 1116 (1996).CrossRefGoogle Scholar
37.Knapp, J.A. in Photons and Low Energy Particles in Surface Processing, edited by Ashby, C.I.H., Brannon, J.H., and Pang, S.W. (Mater. Res. Soc. Symp. Proc, 236, Pittsburgh, PA, 1992), p. 473.Google Scholar
38.Phaneuf, M.W., Micron 30 277 (1999).CrossRefGoogle Scholar
39. Some of the indentation tests were performed at the Nano Instruments Innovation Center of MTS Systems Corp., Knoxville, TN.Google Scholar
40.Metals Handbook (ASM, Metals Park, Ohio, 1990), Vol. 2, pp. 437, 1143.Google Scholar
41.Atlas of Stress-Strain Curves (ASM, Metals Park, Ohio, 1987), p. 551.Google Scholar
42. Nano SP1—Finite Element Modeling Software, Nano Instruments Innovation Center of MTS Systems Corp., Knoxville, TN.Google Scholar
43.Lubliner, J., Plasticity Theory (Macmillan, New York, 1976).Google Scholar
44.Capehart, T.W. and Cheng, Y-T., J. Mater. Res. 18 827 (2003).CrossRefGoogle Scholar
45.Mechanical Behavior of Materials, edited by McClintock, F.A. and Argon, A.S. (Addison-Wesley, Reading, MA, 1966), pp. 443458.Google Scholar
46.Follstaedt, D.M., Knapp, J.A. and Myers, S.M., Metall. Mater. Trans. A 34A 935 (2003).CrossRefGoogle Scholar
47.Hugo, R.C., Kung, H., Weertman, J.R., Mitra, R., Knapp, J.A. and Follstaedt, D.M., Acta Mater. 51 1937 (2003).CrossRefGoogle Scholar