Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T03:40:22.191Z Has data issue: false hasContentIssue false

Epitaxy, microstructure, and processing-structure relationships of TiO2 thin films grown on sapphire (0001) by MOCVD

Published online by Cambridge University Press:  03 March 2011

H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
T.J. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
H. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
J. Guo
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
H.K. Kim
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
D.J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439–4838
Get access

Abstract

TiO2 thin films have been deposited on sapphire (0001) substrates under various conditions by metal-organic chemical vapor deposition. The structural properties of the deposited films were characterized by x-ray diffraction and transmission electron microscopy. The important growth parameters were found to be the deposition temperature and the deposition rate. The ranges studied for the two parameters were 400 to 850 °C and 10 to 120 Å/min, respectively. Depending on the growth conditions, most of the deposited films were either single-phase anatase or rutile, or a mixture of the two. These films were all epitaxial, but none of them were single-crystal films. Three distinct epitaxial relationships were observed between the films and the substrates, and, depending on the growth conditions, a deposited film can contain one, two, or all three of them. The fact that the films we obtained, although epitaxial, were never single crystal is explained based on the consideration of the difference in the rotational symmetries of the substrate surface and the film growth plane. We believe that it should be generally true that, in heteroepitaxial growth, a true single-crystal film can never be obtained as long as the point symmetry group of the substrate surface is not a subgroup of that of the film growth plane.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chang, L. L. and Giessen, B. C., Synthetic Modulated Structures (Academic Press, Inc., Orlando, FL, 1985).Google Scholar
2Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
3Bertolet, D. C., Hsu, J. K., and Lau, K. M., J. Appl. Phys. 62, 120 (1987).CrossRefGoogle Scholar
4Singh, J., Bajaj, K. K., Reynolds, D. C., Litton, C. W., Yu, P. Y., Masselink, W. T., Fischer, R., and Morkoç, H., J. Vac. Sci. Technol. B 3, 1061 (1985).CrossRefGoogle Scholar
5Tsang, W. T. and Schubert, E. F., Appl. Phys. Lett. 49, 855 (1985).Google Scholar
6Kawai, H., Kaneko, K., and Watanabe, N., J. Appl. Phys. 56, 463 (1984).CrossRefGoogle Scholar
7Wang, Z. Q., Liu, S. H., Li, Y. S., Jona, F., and Marcus, P. M., Phys. Rev. B 35, 9322 (1987).CrossRefGoogle Scholar
8Goodman, D. W., Houston, J. E., and Peden, C. H. F., J. Vac. Sci. Technol. A 5, 823 (1987).CrossRefGoogle Scholar
9Weller-Brophy, L. A., Zelinski, B. J. J., and Birnie, D. P. III, Mater. Res. Bull. XIV (4), 25 (1990).CrossRefGoogle Scholar
10Francombe, M. H. and Krishnaswamy, S. V., J. Vac. Sci. Technol. A 8, 1382 (1990).CrossRefGoogle Scholar
11Ramesh, R., Inam, A., Wilkens, B., Chan, W. K., Sands, T., Tarascon, J. M., Fork, D. K., Geballe, T. H., Evans, J., and Bullington, J., Appl. Phys. Lett. 59, 1782 (1991).CrossRefGoogle Scholar
12Chang, H. L. M., You, H., Guo, J., and Lam, D. J., Appl. Surf. Sci. 48/49, 12 (1991).CrossRefGoogle Scholar
13Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, C. M., Chiarello, R. P., Zhang, T. J., and Lam, D. J., J. Mater. Res. 7, 2495 (1992).CrossRefGoogle Scholar
14Chang, H. L. M., Gao, Y., Zhang, T. J., and Lam, D. J., Appl. Surf. Sci. 65/66, 220 (1993).CrossRefGoogle Scholar
15You, H., Chang, H. L. M, Chiarello, R. P., and Lam, D. J., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 181.Google Scholar
16Guo, J., Ellis, D. E., and Lam, D. J., Phys. Rev. B 45, 13647 (1992).CrossRefGoogle Scholar
17Guo, J., Chang, H. L. M, and Lam, D. J., Appl. Phys. Lett. 61, 3116 (1992).CrossRefGoogle Scholar
18Chang, H. L. M., Zhang, H., and Shen, Z., unpublished data.Google Scholar
19Li, D. X., Pirouz, P., Heuer, A. H., Yadavalli, S., and Flynn, C. P., Philos. Mag. A 65, 403 (1992).CrossRefGoogle Scholar
20DeVries, R. C. and Roy, R., Ceram. Bull. 33, 370 (1954).Google Scholar