Article contents
Effects of the catalysts on the evolution of in-plane stress in alkoxide-derived silica gel coatings during heating
Published online by Cambridge University Press: 31 January 2011
Abstract
The effects of the catalysts on the evolution of in-plane stress during heating were studied for silica gel coatings prepared from alkoxide solutions. Tetramethylorthosilicate was hydrolyzed in the presence of nitric acid, acetic acid, and ammonia as catalysts. Gel films were deposited on Si(100) wafers by spin coating, and heated at a constant rate of 5 °C/min up to 500 °C. During heating, in situ measurement of the in-plane stress was conducted by measuring the radius of curvature of the substrate. In-plane, tensile stress increased up to 560 and 370 MPa in the films prepared with HNO3 and CH3COOH, respectively. However, the stress was much smaller at 30–40 MPa, which remained almost constant during heating, for the films prepared with NH3. The much smaller stress resulted from the much lower degrees of the progress of densification during heating, which was revealed in the changes in thickness and infrared absorption spectra during heating. The low degrees of the progress of densification were caused by the colloidal nature of the gel films.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2009
References
- 2
- Cited by