Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T03:11:19.020Z Has data issue: false hasContentIssue false

Development of copper-on-alumina catalytic materials for the cleanup of flue gas and the disposal of diluted ammonium sulfate solutions

Published online by Cambridge University Press:  03 March 2011

G. Centi
Affiliation:
Dip. Chimica Ind. e dei Materiali, V. le Risorgimento 4, 40136 Bologna, Italy
B.K. Hodnett
Affiliation:
Department of Chemical and Life Sciences, University of Limerick, Limerick, Ireland
P. Jaeger
Affiliation:
Rhone-Poulenc, Centre de Recherches d'Aubervilliers, 52 Rue de la Haie Coq, 93308 Aubervilliers Cedex, France
C. Macken
Affiliation:
Department of Chemical and Life Sciences, University of Limerick, Limerick, Ireland
M. Marella
Affiliation:
Enirisorse, Centro Ricerche Venezia, via delle Industrie 39, Porto Marghera (VE), Italy
M. Tomaselli
Affiliation:
Enirisorse, Centro Ricerche Venezia, via delle Industrie 39, Porto Marghera (VE), Italy
G. Paparatto
Affiliation:
Enichem, C.R. Bollate, Via S. Pietro 50, 20021 Bollate (MI), Italy
S. Perathoner
Affiliation:
Dip. Chimica Ind. e dei Materiali, V. le Risorgimento 4, 40136 Bologna, Italy
Get access

Abstract

Some aspects of the industrial development of copper-on-alumina catalytic materials for the combined removal of SO2 (DeSOx and NOx (DeNOx) from flue gas of power plants are discussed. Applications of these catalytic materials for the recovery of sulfuric acid from diluted aqueous solutions of ammonium sulfate are also outlined. In particular, the following specific topics are analyzed: (i) the relationship between textural and reactivity properties. (ii) the problem of the design of samples with improved DeSOx properties in relation to the stability of the samples over extended operations, and (iii) the optimization of the regeneration characteristics of the samples. Details on the flow sheet of the technology are also given.

Type
Environmentally Benign Materials and Processes
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1(a) Official Journal of the European Communities, 30, 1 (1988); (b) Eurostat, Environmental Statistics, 1989, Statistical Office of the European Communities.Google Scholar
2(a) Rentz, O., in Integrated Environmental Control (EPRI Pub., Palo Alto, CA, 1989), Chap. 5; (b) Rubin, E. S., Salmento, J. S., and Frey, H. C., ibid., Chap. 6; (c) Ellison, W. and Sedman, C.B., German FGD/DeNOx Experience, EPA Report PB87.147161 (1987).Google Scholar
3Holliden, G. A., International Coal Conference, Pittsburgh, PA (1988).Google Scholar
4Moser, R. E., Hydrocarbon Processing 10, 88 (1981).Google Scholar
5Bosch, H. and Janssen, F., Catal. Today 2, 369 (1988).CrossRefGoogle Scholar
6Matsuda, S., Kamo, T., Kato, A., Nakajima, F., Kimura, T., and Kuroda, H., Ind. Eng. Chem., Prod. Res. Dev. 21, 48 (1986).CrossRefGoogle Scholar
7Nam, I-S., Eldridge, J. W., and Kittrell, J. R., Ind. Eng. Chem., Prod. Res. Dev. 5, 192 (1986).Google Scholar
8Otowa, T. and Inui, T., Appl. Catal. 18, 47 (1985).Google Scholar
9Angele, H., Gottstein, J., and Zellner, K., in Proc. 4th Symposium on Integrated Environmental Control (EPRI Pub., Palo Alto, CA, 1989), Chap. 14.Google Scholar
10Haslbeck, J. L., Neal, L. G., and Ma, W. T., ibid., Chap. 10.Google Scholar
11Bettoni, C., DiDio, M., and Ghiglione, G., Chim. Ind. (Milan) 72, 30 (1990).Google Scholar
12Dautzenberg, F. M., Nader, J. E., and van Ginneken, A. J. J., Chem. Eng. Prog. 67, 86 (1971).Google Scholar
13Centi, G., Riva, A., Passarini, N., Brambilla, G., Hodnett, B. I., Delmon, B., and Ruwet, M., Chem. Eng. Sci. 45, 2679 (1990).Google Scholar
14Centi, G., Passarini, N., Perathoner, S., and Riva, A., Ind. Eng. Chem. Res. 31, 1947 and 1956 (1992).Google Scholar
15Centi, G., Passarini, N., Perathoner, S., Riva, A., and Stella, G., Ind. Eng. Chem. Res. 31, 1963 (1992).Google Scholar
16Centi, G., Passarini, N., Perathoner, S., and Riva, A., in New Frontiers in Catalysis, edited by Guczi, L. (Elsevier Science Pub., Amsterdam, 1993), p. 2677.Google Scholar
17Centi, G., Perathoner, S., Kartheuser, B., Rohan, D., and Hodnett, B. K., Catal. Today 17, 103 (1993).Google Scholar
18Centi, G., Perathoner, S., Kartheuser, B., Rohan, D., and Hodnett, B. K., Appl. Catal. B: Environmental 1, 129 (1992).Google Scholar
19Brambilla, G., Centi, G., Perathoner, S., and Riva, A., in Proceedings European Conference on Advanced Materials and Processes,edited by Clyne, T. W. and Withers, P. J. (The Institute of Materials Pub., London, 1992), Vol. 3, p. 75.Google Scholar
20Kartheuser, B., Hodnett, B. K., Riva, A., Centi, G., Matralis, H., Ruwet, M., Grange, P., and Passarini, N., Ind. Eng. Chem. Res. 30, 2105 (1991).Google Scholar
21Centi, G., Nigro, C., Perathoner, S., and Stella, G., in Environmental Catalysis, edited by Amor, J. N. (ACS Symposium Series 55, ACS Pub., Washington, DC, 1994) Chap. 3, p. 22.CrossRefGoogle Scholar
22Waquif, M., Saur, O., Lavalley, J. C., Perathoner, S., and Centi, G., J. Phys. Chem. 95, 4051 (1991).CrossRefGoogle Scholar
23Domeniconi Papadakis, A., Thesis, Univ. Bologna (1993).Google Scholar
24Centi, G., Passarini, N., Perathoner, S., and Riva, A., in Environmental Catalysis, edited by Armour, J. N. (ACS Symposium Series 55, ACS Pub., Washington, DC, 1994), Chap. 19, p. 233.Google Scholar
25Pepe, F., Angeletti, C., De Rossi, S., and Lo Jacono, M., J. Catal. 91, 69 (1985).Google Scholar
26Strohmeier, B. R., Leyden, D. E., Scott Field, R., and Hercules, D. M., J. Catal. 94, 514 (1985).Google Scholar