Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T07:37:06.478Z Has data issue: false hasContentIssue false

Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity

Published online by Cambridge University Press:  03 March 2011

Y.H. Liu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
G. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
M.X. Pan
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
P. Yu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
D.Q. Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
W.H. Wang*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A class of Ni–Co–Nb–Ta bulk metallic glasses (BMGs) with a high glass-forming ability is developed. With proper compositional modification, the BMGs exhibit the enhanced plastic strain (up to 4%) and the ultimate strength (up to 3540 MPa). It is found that the interactions of shear bands such as intersecting, arresting, and branching, which normally are related to the plastic metallic glasses, can be observed both in the plastic and brittle Ni–Co–Nb–Ta BMGs. Obvious serrated flow behavior is observed during plastic deformation. The origins of the plasticity and the serrated flow in the Ni-based BMGs are analyzed in analogy to that in crystalline materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
2Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R. 44, 45 (2004).CrossRefGoogle Scholar
3Li, S. and Wang, W.H.: Formation and properties of new heavy rare-earth-based bulk metallic glasses. Sci. Technol. Adv. Mater. 6, 823 (2005).CrossRefGoogle Scholar
4Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
5Fan, C. and Inoue, A.: Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett. 77, 46 (2000).CrossRefGoogle Scholar
6Choi-Yim, H., Busch, R., Koester, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
7Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., and Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B. 64, 180201 (2001).CrossRefGoogle Scholar
8Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
9Tang, M.B. and Wang, W.H.: CuZr binary bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).Google Scholar
10Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
11Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
12Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
13Hufnagel, T.C., El-Deiry, P., and Vinci, R.P.: Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scr. Mater. 43, 1071 (2000).CrossRefGoogle Scholar
14Vinogradov, A.Yu. and Khonik, V.A.: Kinetics of shear banding in a bulk metallic glass monitored by acoustic emission measurements. Philos. Mag. 84, 2147 (2004).CrossRefGoogle Scholar
15Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
16Golovin, Y.I., Ivologin, V.I., Knonik, V.A., Kitagawa, K., and Tyurin, A.I.: Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Mater. 45, 947 (2001).CrossRefGoogle Scholar
17Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
18Donovan, P.E. and Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 (1981).CrossRefGoogle Scholar
19Steif, P.S., Spaepen, F., and Hutchinson, J.W.: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).CrossRefGoogle Scholar
20Argon, A.S., Megusar, J., and Grant, N.J.: Shear band induced dilations in metallic glasses. Scripta Metall. 19, 591 (1985).CrossRefGoogle Scholar
21Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Levandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).CrossRefGoogle ScholarPubMed
22Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
23Saida, J., Deny, A., Setyawan, H., Kato, H., and Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).CrossRefGoogle Scholar
24Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., and Shek, C.H.: Enhanced plasticity of Zr-based bulk metallic glass matrix composite with ductile reinforcement. J. Mater. Res. 20, 2386 (2005).CrossRefGoogle Scholar
25Lee, J.C., Kim, Y.C., Ahn, J.P., and Kim, H.S.: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).CrossRefGoogle Scholar
26Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans., JIM 42, 642 (2001).CrossRefGoogle Scholar
27Masumoto, T. and Maddin, R.: Structural stability and mechanical properties of amorphous metals. Mater Sci. Eng. 19, 1 (1975).CrossRefGoogle Scholar
28Xing, D.M., Zhang, T.H., and Wei, B.C.: Deformation morphology underneath the Vickers indent in bulk metallic glasses. Chin. Phys. Lett. 22, 1994 (2005).Google Scholar
29Chmelík, F., Pink, E., Król, J., Balík, J., Pešička, J., and Lukáč, P.: Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission. Acta Mater. 46, 4435 (1998).CrossRefGoogle Scholar
30Lee, M.H., Bae, D.H., Kim, W.T., and Kim, D.H.: Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans., JIM 44, 2084 (2003).CrossRefGoogle Scholar