Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T00:00:13.108Z Has data issue: false hasContentIssue false

Cubic (Mg,Zn)O Nanowire Growth Using Catalyst-Driven Molecular Beam Epitaxy

Published online by Cambridge University Press:  03 March 2011

Y.W. Heo
Affiliation:
Kyungpook National University, Department of Inorganic Materials Engineering, Daegu 702-701, Korea
L-C. Tien
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, Florida 32611
D.P. Norton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, Florida 32611
Get access

Abstract

We report on the growth of Mg-rich cubic (Mg,Zn)O nanowires using a catalysis-driven molecular-beam-epitaxy method. Nanowires were grown on both Si and Al2O3 substrates coated with a nominally 2-nm-thick layer of Ag. The (Mg,Zn)O nanowires were grown with a Zn and Mg cation flux, with an O2/O3 mixture serving as the oxidizing species. The growth temperature was 400 °C. Under these conditions, nanowires were observed to grow on the Ag sites. The nanowire diameter was on the order of 90 nm. (Mg,Zn)O nanowires as long as 2 μm were realized. High-resolution transmission electron microscope imagery shows the nanowires had single-phase cubic rock salt structure (Mg,Zn)O with a growth direction along the [100]. The presence and compositional distribution of Mg and Zn in the single nanowire were confirmed using a compositional line-scan, profiled across the nanowire, by energy dispersive spectrometry with scanning transmission electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nikoobakht, B., Michaels, C.A., Stranick, S.J. and Vaudin, M.D.: Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 85, 3244 (2004).CrossRefGoogle Scholar
2Yang, J.B., Zhou, X.D., James, W.J., Malik, S.K. and Wang, C.S.: Growth and magnetic properties of MnO2−δnanowire microspheres. Appl. Phys. Lett. 85, 3160 (2004).CrossRefGoogle Scholar
3Chun, H.J., Choi, Y.S., Bae, S.Y., Choi, H.C. and Park, J.: Single-crystalline gallium-doped indium oxide nanowires. Appl. Phys. Lett. 85, 461 (2004).CrossRefGoogle Scholar
4Chang, Y.J., Kang, B.H., Kim, G.T., Park, S.J. and Ha, J.S.: Percolation network of growing V2O5 nanowires. Appl. Phys. Lett. 84, 5392 (2004).CrossRefGoogle Scholar
5Liu, Y., Zheng, C., Wang, W., Yin, C. and Wang, G.: Synthesis and characterization of rutile SnO2 nanorods. Adv. Mater. 13, 1883 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
6Zhou, J., Deng, S.Z., Xu, N.S., Chen, J. and She, J.C.: Synthesis and field-emission properties of aligned MoO3 nanowires. Appl. Phys. Lett. 83, 2653 (2003).CrossRefGoogle Scholar
7Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Ren, F., Fleming, P.H. and Norton, D.P.: Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 81, 3046 (2002).CrossRefGoogle Scholar
8Chang, K-W. and Wu, J-J.: Low-temperature growth of well-aligned β–Ga2O3 nanowires from a single-source organometallic precursor. Adv. Mater. 16, 545 (2004).CrossRefGoogle Scholar
9Wang, J., Chen, Q., Zeng, C. and Hou, B.: Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 16, 137 (2004).CrossRefGoogle Scholar
10Liu, S. and Huang, K.: Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol. Energy Mater. Sol. Cells 85, 125 (2005).Google Scholar
11Woo, K., Lee, H.J., Ahn, J-P. and Park, Y.S.: Sol-gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 15, 1761 (2003).CrossRefGoogle Scholar
12Limmer, S.J. and Cao, G.: Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater. 15, 427 (2004).CrossRefGoogle Scholar
13Yu, L., Song, H., Lu, S., Liu, Z. and Yang, L.: Influence of shape anisotropy on photoluminescence characteristics in LaPO4:Eu nanowires. Chem. Phys. Lett. 399, 384 (2004).CrossRefGoogle Scholar
14Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T. and Segawa, Y.: Mg x Zn1–x O as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466 (1998).CrossRefGoogle Scholar
15Choopun, S., Vispute, R.D., Yang, W., Sharma, R.P. and Venkatesan, T.: Realization of band gap above 5.0 eV in metastable cubic-phase Mg x Zn1–x O alloy films. Appl. Phys. Lett. 80, 1529 (2002).CrossRefGoogle Scholar
16Zhang, D., Liu, Z., Han, S., Li, C., Lei, B., Stewart, M.P., Tour, J.M. and Zhou, C.: Magnetite (Fe3O4) core-shell nanowires. Synth. Magnetoresistance, Nano Lett 4, 2151 (2004).CrossRefGoogle Scholar
17Chen, J., Shen, W.Z., Chen, N.B., Qiu, D.J. and Wu, H.Z.: The study of composition non-uniformity in ternary MgxZn1−xO thin films. J. Phys: Condens. Matter 15, L475 (2003).Google Scholar
18Zhao, M., Chen, X.L., Zhang, X.N., Dai, L., Jian, J.K. and Xu, Y.P.: Growth and morphologies of one- and three-dimensional MgO nanostructures. Appl. Phys. A: Mater. Sci. 79, 429 (2004).CrossRefGoogle Scholar
19Tang, C., Bando, Y. and Sato, T.: Oxide-assisted catalytic growth of MgO nanowires with uniform diameter distribution. J. Phys. Chem. B 106, 7449 (2002).CrossRefGoogle Scholar
20Yin, Y., Zhang, G. and Xia, Y.: Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv. Funct. Mater. 12, 293 (2002).3.0.CO;2-U>CrossRefGoogle Scholar
21Zhang, J., Zhang, L., Peng, X. and Wang, X.: Fabrication of MgO nanobelts using a halide source and their structural characterization. Appl. Phys. A: Mater. Sci. 73, 773 (2001).CrossRefGoogle Scholar
22Yan, L., Zhuang, J., Sun, X., Deng, Z. and Li, Y.: Formation of rodlike Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Mater. Chem. Phys. 76, 119 (2002).CrossRefGoogle Scholar
23Ma, N-G., Deng, C-J., Peng, Yu., Aravind, M. and Dickon, H.L.: Ng. Formation of MgO nanorods in the reaction zone of a Mg–CuO powder mixture by in situ reaction. Philos. Mag. 84, 69 (2004).CrossRefGoogle Scholar
24Cui, Z., Meng, G.W., Hung, W.D., Wang, G.Z. and Zhang, L.D.: Preparation and characterization of MgO nanorods. Mater. Res. Bull. 35, 1653 (2000).CrossRefGoogle Scholar
25Li, Y., Bando, Y. and Sato, T.: Preparation of network-like MgO nanobelts on Si substrate. Chem. Phys. Lett. 359, 141 (2002).CrossRefGoogle Scholar
26Heo, Y.W., Kaufman, M., Pruessner, K., Siebein, K.N., Norton, D.P. and Ren, F.: ZnO/cubic (Mg,Zn)O radial nanowire heterostructures. Appl. Phys. A: Mater. Sci. 80, 263 (2005).CrossRefGoogle Scholar
27Heo, Y.W., Abernathy, C., Pruessner, K., Sigmund, W., Norton, D.P., Overberg, M., Ren, F. and Chisholm, M.F.: Structure and optical properties of cored wurtzite (Zn,Mg)O heteroepitaxial nanowires. J. Appl. Phys. 96, 3424 (2004).CrossRefGoogle Scholar