Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T02:38:00.793Z Has data issue: false hasContentIssue false

Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams

Published online by Cambridge University Press:  03 July 2013

Gonzalo Alejandro Rocha Rivero*
Affiliation:
Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
Benjamin Franklin Schultz*
Affiliation:
Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
J.B. Ferguson*
Affiliation:
Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
Nikhil Gupta*
Affiliation:
Mechanical and Aerospace Engineering Department, Polytechnic Institute of New York University, Brooklyn, New York 11201
Pradeep Kumar Rohatgi*
Affiliation:
Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Metal matrix syntactic foams are promising materials with high energy absorption capability. To study the effects of matrix strength on the quasistatic compressive properties of syntactic foams using SiC hollow particles as reinforcement, matrices of Al-A206 and Mg-AZ91 were used. Because Al-A206 is a heat-treatable alloy, matrix strength can be varied by heat treatment conditions, and foams in as-cast, T4, and T7 conditions were tested in this study. It is shown that the peak strength, plateau strength, and toughness of the foams increase with increasing yield strength of the matrix and that these foams show better performance than other foams on a specific property basis. High strain rate testing of the Mg-AZ91/SiC syntactic foams showed that there was little strain rate dependence of the peak stress under strain rates ranging from 10−3/s to 726/s.

Type
Review Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Evans, A.G., Hutchinson, J.W., and Ashby, M.F.: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171 (1999).CrossRefGoogle Scholar
Ashby, M.F., Evans, A.G., and Hutchinson, J.W.: Cellular Metals, A Design Guide (Cambridge University, Cambridge, England, 1998).Google Scholar
Chino, Y. and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).CrossRefGoogle Scholar
Balch, D.K., O'Dwyer, J.G., Davis, G.R., Cady, C.M., Gray, G.T. III, and Dunand, D.C.: Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mater. Sci. Eng., A. 391, 408 (2005).CrossRefGoogle Scholar
Balch, D.K. and Dunand, D.C.: Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Mater. 54, 1501 (2006).CrossRefGoogle Scholar
Wu, G.H., Dou, Z.Y., Sun, D.L., Jiang, L.T., Ding, B.S., and He, B.F.: Compression behaviors of cenosphere-pure aluminum syntactic foams. Scr. Mater. 56, 221 (2007).CrossRefGoogle Scholar
Zhang, Q., Lee, P.D., Singh, R., Wu, G., and Lindley, T.C.: Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam. Acta Mater. 57, 3003 (2009).CrossRefGoogle Scholar
Tao, X.F., Zhang, L.P., and Zhao, Y.Y.: Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Mater. Des. 30, 2732 (2009).CrossRefGoogle Scholar
Tao, X.F. and Zhao, Y.Y.: Compressive behavior of Al matrix syntactic foams toughened with Al particles. Scr. Mater. 61, 461 (2009).CrossRefGoogle Scholar
Zhao, Y., Tao, X., and Xue, X.: Manufacture and mechanical properties of metal matrix syntactic foams. In Proceedings of MS&T 2008 Processing, Properties and Performance of Composite Materials, The Printing House Inc.: Stoughton, WI, 2008; p. 2607.Google Scholar
Orbulov, I.N. and Dobránszky, J.: Producing metal matrix syntactic foams by pressure infiltration. Period. Polytech. Mech. Eng. 52, 35 (2008).CrossRefGoogle Scholar
Orbulov, I.N. and Ginsztler, J.: Compressive characteristics of metal matrix syntactic foams. Composites Part A 43, 553 (2012).CrossRefGoogle Scholar
Palmer, R.A., Gao, K., Doan, T.M., Green, L., and Cavallaro, G.: Pressure infiltrated syntactic foams-process development and mechanical properties. Mater. Sci. Eng., A. 464, 85 (2007).CrossRefGoogle Scholar
Dou, Z.Y., Jiang, L.T., Wu, G.H., Zhang, Q., Xiu, Z.Y., and Chen, G.Q.: High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr. Mater. 57, 945 (2007).CrossRefGoogle Scholar
Rohatgi, P.K., Kim, J.K., Gupta, N., Alaraj, S., and Daoud, A.: Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites Part A 37, 430 (2006).CrossRefGoogle Scholar
Zhang, L.P. and Zhao, Y.Y.: Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. J. Compos. Mater. 41, 2105 (2007).CrossRefGoogle Scholar
Kiser, M., He, M.Y., and Zok, F.W.: The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading. Acta Mater. 47, 2685 (1999).CrossRefGoogle Scholar
Drury, W.J., Rickles, S.A., Sanders, T.H. Jr, and Cochran, J.K.: Deformation energy absorption characteristics of a metal/ceramic cellular solid, in Light-Weight Alloys for Aerospace Applications, edited by Loe, E.W., Chia, E.H., and Kim, N.J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1989), p. 311.Google Scholar
Luong, D.D., Strbik, O.M. III, Hammond, V.H., Gupta, N., and Cho, K.: Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization of quasi-static and high strain rates. J. Alloys Compd. 550, 412 (2013).CrossRefGoogle Scholar
Weise, J., Zanetti-Bueckmann, V., Yezerska, O., Schneider, M., and Haesche, M.: Processing, properties and coating of micro-porous syntactic foams. Adv. Eng. Mater. 9, 52 (2007).CrossRefGoogle Scholar
Hartmann, M., Reindel, K., and Singer, R.F.: Fabrication and properties of syntactic magnesium foams, in Porous and Cellular Materials for Structural Applications, edited by Schwartz, D.S., Shih, D.S., Wadley, H.N.G., and Evans, A.G. (Mater. Res. Soc. Symp. Proc. 521, Warrendale, PA, 1998) p. 211.Google Scholar
DeFouw, J.D. and Rohatgi, P.K.: Low density magnesium matrix syntactic foams. In TMS2011 140th Annual Meeting & Exhibition Supplemental Proceedings Materials Fabrication, Properties, Characterization and Modeling, Vol. 2 (John Wiley & Sons, Inc., Hoboken, NJ, 2011), p. 797.CrossRefGoogle Scholar
Daoud, A., Abou El-khair, M.T., Abdel-Aziz, M., and Rohatgi, P.: Fabrication, microstructure and compressive behavior of ZC63 Mg-microballoon foam composites. Compos. Sci. Technol. 67, 1842 (2007).CrossRefGoogle Scholar
Daoud, A.: Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Mater. Sci. Eng., A. 488, 281 (2008).CrossRefGoogle Scholar
Mondal, D.P., Majumder, J.D., Jha, N., Badkul, A., Das, S., Patel, A., and Gupta, G.: Titanium-cenosphere syntactic foam made through powder metallurgy route. Mater. Des. 34, 82 (2012).CrossRefGoogle Scholar
Vendra, L.J., and Rabiei, A.: A study on aluminum-steel composite metal foam processed by casting. Mater. Sci. Eng., A. 465, 59 (2007).CrossRefGoogle Scholar
Rabiei, A. and Vendra, L.J.: A comparison of composite metal foam’s properties and other comparable metal foams. Mater. Lett. 63, 533 (2009).CrossRefGoogle Scholar
Neville, B.P. and Rabiei, A.: Composite metal foams processed through powder metallurgy. Mater. Des. 29, 388 (2008).CrossRefGoogle Scholar
Castro, G. and Nutt, S.R.: Synthesis of syntactic steel foam using mechanical pressure infiltration. Mater. Sci. Eng., A. 535, 274 (2012).CrossRefGoogle Scholar
Peroni, L., Scapin, M., Avalle, M., Weise, J., and Lehmhus, D.: Dynamic mechanical behavior of syntactic iron foams with glass microspheres. Mater. Sci. Eng., A. 552, 364 (2012).CrossRefGoogle Scholar
Mortensen, A. and Jin, I.: Solidification processing of metal matrix composites. Int. Mater. Rev. 37, 101 (1992).CrossRefGoogle Scholar
Chandler, H., editor. Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys (ASM International, Materials Park, OH, 1996), pp. 135145.Google Scholar
San Marchi, C., Cao, F., Kouzeli, M., and Mortensen, A.: Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Mater. Sci. Eng., A 337, 202 (2002).CrossRefGoogle Scholar
Ishikawa, K., Watanabe, H., and Mukai, T.: High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Mater. Lett. 59, 1511 (2005).CrossRefGoogle Scholar
Mukai, T., Kanahashi, H., Yamada, Y., Shimojima, K., Mabuchi, M., Nieh, T.G., and Higashi, K.: Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scr. Mater. 41, 365 (1999).CrossRefGoogle Scholar
Gupta, N., Luong, D.D., and Rohatgi, P.K.: A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy. J. Appl. Phys. 109, 103512 (2011).CrossRefGoogle Scholar
Talamantes-Silva, M., Rodríguez, A., Talamantes-Silva, J., Valtierra, S., and Colás, R.: Effect of solidification rate and heat treating on the microstructure and tensile behavior of an aluminum-copper alloy. Metall. Mater. Trans. B 39, 911 (2008).CrossRefGoogle Scholar
Bäckerud, L., Chai, G., and Tamminen, J.: Solidification Characteristics of Aluminum Alloys volume 2 Foundry Alloys (AFS/Skanaluminium, des Plaines, IL, 1990), pp. 6369.Google Scholar
Srinivasa, A., Swaminathan, J., Gunjan, M.K., Pillai, U.T.S., and Pai, B.C.: Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy. Mater. Sci. Eng., A 527, 1395 (2010).CrossRefGoogle Scholar
Braszczyńska-Malik, K.N. and Zyska, A.: Influence of solidification rate on microstructure of gravity cast AZ91 magnesium alloy. Arch. Foundry Eng. 10, 23 (2010).Google Scholar
Ureña, A., Gómez de Salazar, J.M., Gil, L., Escalera, M.D., and Baldonedo, J.L.: Scanning and transmission electron microscopy study of the microstructural changes occuring in aluminum matrix composites reinforced with SiC particles during casting and welding: interface reactions. J. Microsc. 196, 124 (1999).CrossRefGoogle ScholarPubMed
Luo, A.: Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites. Metall. Mater. Trans. A. 26, 2445 (1995).CrossRefGoogle Scholar
Kaufman, J.G. and Rooy, E.L.: Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, OH, 2004), p. 8182.CrossRefGoogle Scholar
Kaufman, J.G.: Magnesium Alloy Database (Knovel, Norwich, NY, 2011). Table 2b, Online version available at:http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=4259&VerticalID=0.Google Scholar