Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T23:57:28.907Z Has data issue: false hasContentIssue false

Coating of uniform inorganic particles with polymers: III. Polypyrrole on different metal oxides

Published online by Cambridge University Press:  03 March 2011

Chin-Lin Huang*
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699-5814
Egon Matijevic*
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699-5814
*
a)On leave from China Steel Corporation, Kaohsiung, Taiwan, Republic of China.
b) Author to whom correspondence should be addressed.
Get access

Abstract

Five kinds of uniform metal oxide particles (α-Fe2O3, CeO2, CuO, NiO, and SiO2) were coated with polypyrrole by reacting the dispersed solids with pyrrole in a water/ethanol medium without the use of a soluble oxidant. When the process was carried out in air, all particles were coated with the polymer, although the thickness of the layer varied on different cores. In CuO dispersions, independent polypyrrole particles were produced in addition to coated spheres. While oxygen is the major oxidant that initiates the polymerization of pyrrole, some metal oxides may also affect the reaction both in terms of the amount and the composition of the shell. Thus, α-Fe2O3 and SiO2 were found to be inactive in the polymerization, while CeCh and CuO react with the adsorbed pyrrole molecules through a reductive-dissolution process, in which the monomers are oxidized, causing a release of reduced metal ions.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Furusawa, K., Kimura, Y., and Tagawa, T., Kobunshi Ronbunshu 40, 697 (1983).CrossRefGoogle Scholar
2Lorimer, J. P., Mason, T. J., Kershaw, D., Livsey, I., and Templeton-Knight, R., Colloid. Polym. Sci. 269, 392 (1991).CrossRefGoogle Scholar
3Oyama, H. T., Sprycha, R., Xie, Y., Partch, R. E., and Matijević, E., J. Colloid Interface Sci. 160, 298 (1993).CrossRefGoogle Scholar
4Partch, R. E., Gangolli, S. G., Matijević, E., Cai, W., and Arajs, S., J. Colloid Interface Sci. 144, 27 (1991).CrossRefGoogle Scholar
5Huang, C. L., Partch, R. E., and Matijević, E., J. Colloid Interface Sci. (1995, in press).Google Scholar
6Kuramoto, N., Yamazaki, M., Nagai, K., Koyama, K., Tanaka, K., Yatsuzuka, K., and Higashiyama, Y., Thin Solid Films 239, 169 (1994).CrossRefGoogle Scholar
7Hsu, W. P., Yu, R., and Matijević, E., Powder Technol. 63, 265 (1990).CrossRefGoogle Scholar
8Hsu, W. P., Ronnquist, L., and Matijević, E., Langmuir 4, 31 (1988).CrossRefGoogle Scholar
9Matijević, E. and Scheiner, P., J. Colloid Interface Sci. 63, 509 (1978).CrossRefGoogle Scholar
10Durand-Keklikian, L., Haq, I., and Matijević, E., Colloids Surf. A 72, 267 (1994).CrossRefGoogle Scholar
11Hsu, W. P., Yu, R., and Matijević, E., J. Colloid Interface Sci. 156, 56 (1993).CrossRefGoogle Scholar
12Stöber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
13Bjorklund, R. B. and Liedberg, B., J. Chem. Soc. Chem. Commun. 1986, 1293 (1986).CrossRefGoogle Scholar
14Street, G. B., Clarke, T. C., Krounbi, M., Hanazawa, K., Lee, V., Pfluger, P., Scott, J. C., and Weiser, G., Mol. Cryst. Liq. Cryst. 83, 253 (1982).CrossRefGoogle Scholar
15Badrinarayanan, S., Mandale, A. B., Sainkar, S. R., Pavaskar, N. R., and Ramaswamy, V., I Mater. Res. 9, 1140 (1994).CrossRefGoogle Scholar
16Blesa, M. A., Morando, P. J., and Regazzoni, A. E., in Chemical Dissolution of Metal Oxides (CRC, Boca Raton, FL, 1994), p. 280.Google Scholar
17Stone, A. T. and Morgan, J. J., in Aquatic Surface Chemistry, edited by Stumm, W. (John Wiley & Sons, New York, 1987), Chap. 9.Google Scholar
18Genies, E. M., Bidan, G., and Diaz, A. F., J. Electroanal. Chem. 149, 101 (1983).CrossRefGoogle Scholar
19Bjorklund, R. B., J. Chem. Soc, Faraday Trans. I 83, 1507 (1987).CrossRefGoogle Scholar
20Blackley, D. C., in Emulsion Polymerisation (John Wiley & Sons, New York, 1975), Chap. 1.Google Scholar
21Kojima, T., Takaku, H., Urata, Y., and Gotoh, K., J. Appl. Polym. Sci. 48, 1395 (1993).CrossRefGoogle Scholar
22Gardini, G. M., in Advances in HeterocycUc Chemistry, edited by Katrizky, A. E. and Boulton, A. J. (Academic Press, New York and London, 1973), Vol. 15, p. 68.Google Scholar
23Nazzal, A. I., Street, G. B., and Wynne, K., J. Mol. Cryst. Liq. Cryst. 125, 303 (1985).CrossRefGoogle Scholar
24Pfluger, P., Krounbi, M., and Street, G. B., J. Chem. Phys. 78, 3212 (1983).CrossRefGoogle Scholar
25Parsons, A. E., J. Mol. Spectrosc. 6, 201 (1961).CrossRefGoogle Scholar
26Myers, R. E., J. Electron. Mater. 15, 61 (1986).CrossRefGoogle Scholar