Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T16:28:08.889Z Has data issue: false hasContentIssue false

Biomimetic calcium carbonate–gelatin composites as a model system for eggshell mineralization

Published online by Cambridge University Press:  27 November 2012

Oliver E. Armitage
Affiliation:
Department of Engineering, Cambridge University, Cambridge, CB2 1PZ, United Kingdom
Daniel G.T. Strange
Affiliation:
Department of Engineering, Cambridge University, Cambridge, CB2 1PZ, United Kingdom
Michelle L. Oyen*
Affiliation:
Department of Engineering, Cambridge University, Cambridge, CB2 1PZ, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The composite nature of mineralized natural materials is achieved through both the microstructural inclusion of an organic component and an overall microstructure that is controlled by templating onto organic macromolecules. A modification of an existing laboratory technique is developed for the codeposition of a CaCO3–gelatin composite with a controllable organic content. First, calibration curves are developed to determine the organic content of a CaCO3–gelatin composite from infrared spectra. Second, a CaCO3–gelatin composite is deposited on either glass coverslips or demineralized eggshell membranes using an automated alternating soaking process. Electron microscopy images and use of the infrared spectra calibration curves show that by altering the amount of gelatin in the ionic growth solutions, the final organic component of the mineral can be regulated over the range of 1–10%, similar to that of natural eggshell.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hunter, G.: Interfacial aspects of biomineralization. Curr. Opin. Solid State Mater. Sci. 1(3), 430435 (1996).CrossRefGoogle Scholar
Barthelat, F. and Espinosa, H.D.: An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp. Mech. 47(3), 311324 (2007).CrossRefGoogle Scholar
Aizenberg, J., Lambert, G., Weiner, S., and Addadi, L.: Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J. Am. Chem. Soc. 124(1), 3239 (2002).CrossRefGoogle ScholarPubMed
Gower, L.: Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 210(4), 719734 (2000).CrossRefGoogle Scholar
Fernandez, M.S., Passalacqua, K., Arias, J.I., and Arias, J.L.: Partial biomimetic reconstitution of avian eggshell formation. J. Struct. Biol. 148(1), 110 (2004).CrossRefGoogle ScholarPubMed
Shen, F.: The modulation of collagen on crystal morphology of calcium carbonate. J. Cryst. Growth 242(1–2), 239244 (2002).CrossRefGoogle Scholar
Addadi, L. and Weiner, S.: Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc. Nat. Acad. Sci. U.S.A. 82(12), 41104114 (1985).CrossRefGoogle ScholarPubMed
Elhadj, S., Salter, E.A., Wierzbicki, A., De Yoreo, J.J., Han, N., and Dove, P.M.: Peptide controls on calcite mineralization: Polyaspartate chain length affects growth kinetics and acts as a stereochemical switch on morphology. Cryst. Growth Des. 6(1), 197201 (2006).CrossRefGoogle Scholar
Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Tough, bio-inspired hybrid materials. Science 322(5907), 15161520 (2008).CrossRefGoogle ScholarPubMed
Taguchi, T., Kishida, A., and Akashi, M.: Hydroxyapatite formation on/in poly (vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chem. Lett. 27(8), 711712 (1998).CrossRefGoogle Scholar
Taguchi, T., Kishida, A., and Akashi, M.: Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. J. Biomater. Sci., Polym. Ed. 10(3), 331339 (1999).CrossRefGoogle ScholarPubMed
Taguchi, T., Kishida, A., and Akashi, M.: Apatite formation on/in hydrogel matrices using an alternate soaking process (III): Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. J. Biomater. Sci., Polym. Ed. 10(8), 795804 (1999).CrossRefGoogle ScholarPubMed
Watanabe, J. and Akashi, M.: Integration approach for developing a high-performance biointerface: Sequential formation of hydroxyapatite and calcium carbonate by an improved alternate soaking process. Appl. Surf. Sci. 255(2), 344349 (2008).CrossRefGoogle Scholar
Yamaguchi, I., Kogure, T., Sakane, M., Tanaka, S., Osaka, A., and Tanaka, J.: Microstructure analysis of calcium phosphate formed in tendon. J. Mater. Sci. - Mater. Med. 14(10), 883889 (2003).CrossRefGoogle ScholarPubMed
Yu, H-S., Jang, J-H., Kim, T-I., Lee, H-H., and Kim, H-W.: Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J. Biomed. Mater. Res. Part A 88(3), 747754 (2009).CrossRefGoogle ScholarPubMed
Ogomi, D., Serizawa, T., and Akashi, M.: Bioinspired organic-inorganic composite materials prepared by an alternate soaking process as a tissue reconstitution matrix. J. Biomed. Mater. Res. Part A 67(4), 13601366 (2003).CrossRefGoogle ScholarPubMed
Watanabe, J. and Akashi, M.: Formation of hydroxyapatite provides a tunable protein reservoir within porous polyester membranes by an improved soaking process. Biomacromolecules 8(7), 22882293 (2007).CrossRefGoogle ScholarPubMed
Ogomi, D., Serizawa, T., and Akashi, M.: Controlled release based on the dissolution of a calcium carbonate layer deposited on hydrogels. J. Controlled Release 103(2), 315323 (2005).CrossRefGoogle ScholarPubMed
Serizawa, T., Tateishi, T., and Akashi, M.: Cell-compatible properties of calcium carbonates and hydroxyapatite deposited on ultrathin poly(vinyl alcohol)-coated polyethylene films. J. Biomater. Sci., Polym. Ed. 14(7), 653663 (2003).CrossRefGoogle ScholarPubMed
Strange, D.G.T. and Oyen, M.L.: Biomimetic bone-like composites fabricated through an automated alternate soaking process. Acta Biomater. 7(10), 35863594 (2011).CrossRefGoogle ScholarPubMed
Panheleux, M., Nys, Y., Williams, J., Gautron, J., Boldicke, T., and Hincke, M.T.: Extraction and quantification by ELISA of eggshell organic matrix proteins (ovocleidin-17, ovalbumin, ovotransferrin) in shell from young and old hens. Poult. Sci. 79(4), 580588 (2000).CrossRefGoogle Scholar
Rose, M.L.H. and Hincke, M.T.: Protein constituents of the eggshell: Eggshell-specific matrix proteins. Cell. Mol. Life Sci. 66(16), 27072719 (2009).CrossRefGoogle ScholarPubMed
Hunton, P.: Research on eggshell structure and quality: An historical overview. Rev. Bras. de Ciência Avícola 7(2), 6771 (2005).CrossRefGoogle Scholar
Jin, D., Wang, F., and Yue, L.: Phase and morphology evolution of vaterite crystals in water/ethanol binary solvent. Cryst. Res. Technol. 46(2), 140144 (2011).CrossRefGoogle Scholar
Seo, K-S., Han, C., Wee, J-H., Park, J-K., and Ahn, J-W.: Synthesis of calcium carbonate in a pure ethanol and aqueous ethanol solution as the solvent. J. Cryst. Growth 276(3–4), 680687 (2005).CrossRefGoogle Scholar
Manoli, F. and Dalas, E.: Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J. Cryst. Growth 218(2–4), 359364 (2000).CrossRefGoogle Scholar
Abramoff, M.D., Magelhaes, P.J., and Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11(7), 3642 (2004).Google Scholar
Haaland, D.: Application of new least-squares methods for the quantitative infrared analysis of multicomponent samples. Appl. Spectrosc. 36(6), 665673 (1982).CrossRefGoogle Scholar
Jackson, G.J.B.: Infrared Transmission Spectra of Carbonate Minerals (Chapman & Hall, London, UK, 1993).Google Scholar
Farmer, W.B.: The carbonate minerals, in The Infrared Spectra of Minerals (Mineralogical Society of London Monograph, London, UK, 1974).Google Scholar
Krimm, S. and Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Biopolymers 22(1), 217225 (1983).CrossRefGoogle Scholar
Arias, J.L., Fernandez, M.S., Dennis, J.E., and Caplan, A.I.: Collagens of the chicken eggshell membranes. Connect. Tissue Res. 26(1–2), 3745 (1991).CrossRefGoogle ScholarPubMed
Fernandez, M.S., Araya, M., and Arias, J.L.: Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol. 16(1), 1320 (1997).CrossRefGoogle ScholarPubMed
Andreassen, J-P.: Formation mechanism and morphology in precipitation of vaterite, nano-aggregation or crystal growth? J. Cryst. Growth 274(1–2), 256264 (2005).CrossRefGoogle Scholar
Wu, T.M., Rodriguez, J.P., Fink, D.J., Carrino, D.A., Blackwell, J., Caplan, A.I., and Heuer, A.H.: Crystallization studies on avian eggshell membranes: Implications for the molecular factors controlling eggshell formation. Matrix Biol. 14(6), 507513 (1995).CrossRefGoogle ScholarPubMed
Pines, M., Knopov, V., and Bar, A.: Involvement of osteopontin in egg shell formation in the laying chicken. Matrix Biol. 14(9), 765771 (1995).CrossRefGoogle ScholarPubMed
Addadi, L., Moradian, J., Shay, E., Maroudas, N.G., and Weiner, S.: A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proc. Nat. Acad. Sci. U.S.A. 84(9), 27322736 (1987).CrossRefGoogle ScholarPubMed