Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T00:30:27.607Z Has data issue: false hasContentIssue false

Activated carbon for control of nitrogen oxide emissions

Published online by Cambridge University Press:  03 March 2011

A.M. Rubel
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, Kentucky 40511-8433
M.L. Stewart
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, Kentucky 40511-8433
J.M. Stencel
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, Kentucky 40511-8433
Get access

Abstract

Activated carbons were used to selectively remove NOx from simulated flue gas at temperatures between 25 and 125 °C. Processing conditions and physical/chemical characteristics of the carbons which affected NOx adsorption, storage, and release were investigated. Oxygen as a coreactant was necessary to maximize the conversion of NO to NO2 and condensation of NO2 within the pores of the carbons. A NO-to-NO2 conversion mechanism is presented and discussed relative to previous research. A process for selectively removing NOx and concentrating it as NO2 in an alternate process stream is outlined. The purified NO2 stream could be used for chemicals manufacturing.

Type
Environmentally Benign Materials and Processes
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Knott, S. and Offen, G., Environmental Update, 1023 (Jan. 1993).Google Scholar
2Bosch, H. and Janssen, F., Catal. Today 2, 369 (1988).Google Scholar
3Gangwal, S. K., Howe, G. B., Spivey, J. J., Silveston, P. L., Hudgins, R. R., and Metzinger, J. G., Environ. Prog. 12, 128 (1993).CrossRefGoogle Scholar
4Juentgen, H., Knoblauch, K., Richter, E., and Juergen, H. J., FRG Patent 3,512,168 (1986).Google Scholar
5Grzybek, T. and Papp, H., Appl. Catal. B, Environ. 1, 271 (1992).Google Scholar
6Gutberlet, H., VGB Kraftwerkstech 68, 287 (1988).Google Scholar
7Lowe, P. A. and Perlsweig, M., Proc. Am. Power Conf. 52, 584 (1990).Google Scholar
8Radtke, F., Koeppel, R. A., and Baiker, A., Appl. Catal. A, Gen. 107, L125 (1994).Google Scholar
9DeGroot, W. F., Osterheld, T. H., and Richards, G. N., Carbon 29, 185 (1991).Google Scholar
10Hamashita, H., Yamada, H., and Tomita, A., Appl. Catal. 78, L1 (1991).Google Scholar
11Schwartz, J. M. and Schmidt, L. D., J. Catal. 148, 22 (1994).CrossRefGoogle Scholar
12Richter, E., Schmidt, H-J., and Schecker, H. G., Chem. Eng. Technol. 13, 332 (1990).Google Scholar
13Rubel, A. M., Stencel, J. M., and Ahmed, S. N., Preprints Symposium on Flue Gas Cleanup Processes (ACS, Division of Fuel Chem., Denver, CO, 1993), Vol 38 (2), pp. 726733.Google Scholar
14Rubel, A. M., Stencel, J. M., and Ahmed, S. N., Proceeding of the 1993 AIChE Summer National Meeting (AIChE, Seattle, WA, 1993), Paper no. 77b.Google Scholar
15Rubel, A. M., Stewart, M. L., and Stencel, J. M., Preprints Symposium on NOX Reduction (ACS, Division of Petroleum Chem., San Diego, CA 1994), Vol. 39 (1), pp. 137140.Google Scholar
16Brunauer, S., Emmett, P. H., and Teller, E., J.A.M. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
17Teng, H. and Suuberg, E. M., J. Phys. Chem. 97 478 (1993).Google Scholar
18Teng, H., Suuberg, E. M., Calo, J. M., and Hall, P. J., Proc. 19th Conf. on Carbon (1989), p. 574.Google Scholar
19Rao, M. N. and Hougen, O. A., Chem. Eng. Prog. 48, 110 (1952).Google Scholar
20Gray, P. G., Desai, N. J., and Do, D. D., in Recent Trends in Chem. Reaction Eng., edited by Kulkarni, B. D., Mashelkar, R. A., and Sharma, M. M. (John Wiley Eastern Ltd., 1987), Vol. 1, p. 383.Google Scholar
21Wang, Z. M., Shindo, N., Otake, Y., and Kaneko, K., Carbon 32, 515 (1994).CrossRefGoogle Scholar
22Kakuta, N., Sumiya, S., and Yoshida, K., Catal. Lett. 11, 71 (1991).Google Scholar
23Kaneko, K. and Imai, J., Carbon 26, 954 (1989).Google Scholar
24Odenbrand, C. U. I., Andersson, L. A. H., Brandin, J. G. M., and Jaras, S., Catal. Today 4, 155 (1989).Google Scholar
25Brandin, J. G. M., Andersson, L. A. H., and Odenbrand, C. U. I., Catal. Today 4, 187 (1989).CrossRefGoogle Scholar