Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T08:31:41.875Z Has data issue: false hasContentIssue false

51V and 93Nb high resolution NMR study of NbVO5

Published online by Cambridge University Press:  31 January 2011

J. Davis
Affiliation:
Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201
D. Tinet
Affiliation:
Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201
J.J. Fripiat
Affiliation:
Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201
J.M. Amarilla
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano 115 bis, 28006, Madrid, Spain
B. Casal
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano 115 bis, 28006, Madrid, Spain
E. Ruiz-Hitzky
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano 115 bis, 28006, Madrid, Spain
Get access

Abstract

NbVO5 is characterized by 51V and 93Nb NMR resonance frequencies strongly upfield shifted when compared to those in model compounds V2O5 and LiNbO3. The chemical shift anisotropy dominates the 51V observed spectrum in a magnetic field of 11.7 T. The asymmetry parameter ηc is 0.2 and the quadrupole coupling constant is relatively small (1 MHz). The quadrupolar Hamiltonian overwhelmingly dominates the 93Nb spectrum (ηQ = 0.9) and the quadrupole coupling constant is huge (16.5 MHz). In agreement with the structure obtained from the x-ray powder diagram the isotropic chemical shift of 51V suggests that NbVO5 is indeed an orthovanadate. Interestingly, in NbVO5 the isotropic chemical shift of 93Nb reveals a better shielding of the 93Nb nucleus and a lower electric field gradient than in LiNbO3. Nb octahedra in NbVO5 are sharing corners whereas they share edges in LiNbO3.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amarilla, J. M., Casal, B., and Ruiz-Hitzky, E., Mater. Lett. 8, 132 (1989).CrossRefGoogle Scholar
2Chahboun, H., Groult, D., and Raveau, B., Mater. Res. Bull. XXIII, 805 (1988).CrossRefGoogle Scholar
3Amarilla, J. M. and Casal, B. (personal communication).Google Scholar
4 Unpublished data, this laboratory.Google Scholar
5Taylor, P. C., Baugher, J. F., and Kriz, H. M., Chem. Rev. 75, 203 (1975); 5a: eq. 4; 5b: eq. 43.CrossRefGoogle Scholar
6Kundla, E., Samoson, A., and Lippmaa, E., Chem. Phys. Lett. 83, 229 (1981); eq. 5.CrossRefGoogle Scholar
7Man, P. P., Theveneau, H., and Papon, R., J. Magn. Reson. 64, 271 (1985).Google Scholar
8Coustumer, L. R. Le, Taouk, B., Meur, M. Le, Payen, E., Guelton, M., and Grimbld, J., J. Phys. Chem. 92, 1230 (1988).CrossRefGoogle Scholar
9Eckert, H. and Wacks, I. E., J. Phys. Chem. 93, 6796 (1989).CrossRefGoogle Scholar
10Oldfield, E., Kinsey, R. A., Montez, B., Ray, T., and Smith, K. A., J. Chem. Soc. Chem. Comm., 254 (1982).CrossRefGoogle Scholar
11Ganapathy, S., Schramm, S., and Oldfield, E., J. Chem. Phys. 77, 4360 (1982).CrossRefGoogle Scholar
12Wells, A. F., Structural Inorganic Chemistry, 3rd ed. (Oxford at the Clarendon Press, 1962), p. 688.Google Scholar
13Abrahams, S. C., Reddy, J. M., and Bernstein, F. L., J. Phys. Chem.Solids 27, 997 (1966).CrossRefGoogle Scholar