Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T12:47:10.006Z Has data issue: false hasContentIssue false

Larvicidal activity of Bacillus circulans against the gastrointestinal nematode Haemonchus contortus in sheep

Published online by Cambridge University Press:  29 December 2014

M.C. Sinott
Affiliation:
Programa de Pós-Graduação em Parasitologia, Universidade Federal de Pelotas, Brazil
L.L. Dias de Castro
Affiliation:
Faculdade de Veterinária, Universidade Federal de Pelotas, Brazil
F.L.L Leite
Affiliation:
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
T. Gallina
Affiliation:
Faculdade de Veterinária, Universidade Federal de Pelotas, Brazil
M.T. De-Souza
Affiliation:
Departamento de Biologia Celular, Universidade de Brasília, Brazil
D.F.L. Santos
Affiliation:
Departamento de Biologia Celular, Universidade de Brasília, Brazil
F.P.L. Leite*
Affiliation:
Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Brazil
*
*Fax: +55 (53) 3921 1268 E-mail: [email protected]

Abstract

Efficient control of gastrointestinal parasites is necessary in sheep breeding. However, the available chemically based anthelmintics are becoming less effective due to the development of parasite resistance. An alternative to this problem is biological control. In the present study, we tested the larvicidal effect of Bacillus circulans by administering a spore suspension (2 × 109 colony forming units/ml) orally to lambs naturally infected with Haemonchus contortus. The number of faecal larvae was quantified daily and a significant reduction (~87%, P< 0.05) of larval development was observed after administration of B. circulans. Using a transformed B. circulans with green fluorescent protein, we were able to detect B. circulans in the faeces at 4 h post-administration and 72 h after cessation of its administration. These results suggest the use of B. circulans as a promising biological alternative for parasite control.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barger, I.A. (1999) The role of epidemiological knowledge and grazing management for helminth control in small ruminants. International of Journal Parasitology 29, 4147.CrossRefGoogle ScholarPubMed
Betz, F.S., Hammond, B.G. & Fuchs, R.L. (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology 32, 156173.CrossRefGoogle ScholarPubMed
Bravo, A., Likitvivatanavong, S., Gill, S.S. & Soberón, M. (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 41, 423431.CrossRefGoogle Scholar
Ciordia, H. & Bizel, W.E. (1961) A preliminary report on the effects of Bacillus thuringiensis var. thuringiensis BERLINER on the development of the free-living stages of some cattle nematodes. Journal of Parasitology 47, 41(abstract).Google Scholar
Coles, G.C., Bauer, C., Borgsteede, F.H., Geerts, S., Klei, T.R., Taylor, M.A. & Waller, P.J. (1992) World Association for Advancement of Veterinary Parasitology (WAAVP) methods for detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3543.CrossRefGoogle ScholarPubMed
Cort, W.W., Ackert, J.E., Augustine, D.L. & Payne, F.K. (1922) Investigations on the control of hookworm disease. II. The description of an apparatus for isolating infective hookworm larvae from soil. American Journal of Hygiene 2, 116.Google Scholar
Darriet, F. & Hourgard, J.-M. (2002) An isolate of Bacillus circulans toxic to mosquito larvae. Journal of the American Mosquito Control Association 18, 6567.Google ScholarPubMed
Demeler, J., Von Samson-Himmelstjerna, G. & Sangster, N.C. (2014) Measuring the effect of avermectins and milbemycins on somatic muscle contraction of adult Haemonchus contortus and on motility of Ostertagia circumcincta in vitro. Parasitology 141, 948956.CrossRefGoogle ScholarPubMed
Fawzi, E.M., González-Sánchez, M.E., Corral, M.J., Cuquerella, M. & Alunda, J.M. (2014) Vaccination of lambs against Haemonchus contortus infection with a somatic protein (Hc23) from adult helminths. International Journal for Parasitology 44, 429436.CrossRefGoogle ScholarPubMed
Geary, T.G., Woo, K., McCarthy, J.S., Mackenzie, C.D., Horton, J. & Prichard, R.K. (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. International Journal for Parasitology 40, 113.CrossRefGoogle ScholarPubMed
Getachew, T., Dorchies, P. & Jacquiet, P. (2007) Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. Parasite 14, 314.CrossRefGoogle ScholarPubMed
Holt, J.G. (1994) Bergey's manual of determinative bacteriology. 9th edn.Baltimore, Williams & Wilkins.Google Scholar
Hu, Y., Zhan, B., Keegan, B., Yiu, Y., Miller, M., Jones, K. & Aroian, R. (2012) Mechanistic and single-dose in vivo therapeutic studies of Cry5B anthelmintic action against hookworms. PLoS Neglected Tropical Diseases 6, e1900.CrossRefGoogle ScholarPubMed
Kaplan, R.M. (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle ScholarPubMed
Kotze, A.C., O'Grady, J., Gough, J.M., Pearson, R., Bagnall, N.H., Kemp, D.H. & Akhurst, R.J. (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. International Journal for Parasitology 35, 10131022.CrossRefGoogle ScholarPubMed
Lee, D.-H., Machi, J. & Ohba, M. (2002) High frequency of Bacillus thuringiensis in faeces of herbivorous animals maintained in a zoological garden in Japan. Applied Entomology and Zoology 37, 509516.CrossRefGoogle Scholar
Linares, I.H., Lopez-Arellano, M.E., De Gives, P.M., Hernandez, E.L. & De La Parra, A.B. (2008) Lethal activity of two Bacillus thuringiensis strains against Haemonchus contortus histotropic larvae. Animal Biodiversity and Emerging Diseases: The New York Academy of Sciences 1149, 164166.Google Scholar
López, M.E., Flores, J., Mendoza, P., Vázquez, V., Liébano, E., Bravo, A., Herrera, D., Godínes, E., Vargas, P. & Zamudio, F. (2006) Use of Bacillus thuringiensis toxin as an alternative method of control against Haemonchus contortus. Annals of the New York Academy of Sciences 1081, 347354.CrossRefGoogle ScholarPubMed
Mota, M.A., Kanadani, A.C. & Jackson, V.A. (2003) Biological control of helminth parasites of animals: current stage and future outlook. Pesquisa Veterinária Brasileira 23, 93100.CrossRefGoogle Scholar
Parente, A.F., Silva-Pereira, I., Baldani, J.I., Tibúrcio, V.H., Báo, S.N. & De-Souza, M.T. (2008) Construction of Bacillus thuringiensis wild-type S76 and Cry-derivatives expressing a green fluorescent protein: two potential marker organisms to study bacteria–plant interactions. Canadian Journal of Microbiology 54, 786790.CrossRefGoogle Scholar
Pineda, A.V., Bravo, A., Gives, P.M., Hernandez, E.L., Linares, I.H., Perez, N.Y., Marcelino, L.A., Vargas, G.R., Castro, E.H., Segura, I.G. & Arellano, M.E.L. (2012) Use of Bacillus thuringiensis products as alternative method of control against important veterinary parasitic nematodes. Revista Mexicana Ciencias Pecuarias 3, 7788.Google Scholar
Raymond, B., Johnston, P.R., Nielsen-Leroux, C., Lereclus, D. & Crickmore, N. (2010) Bacillus thuringiensis: an impotent pathogen? Trends in Microbiology 18, 189194.CrossRefGoogle ScholarPubMed
Roberts, F.H.S. & O'Sullivan, S.P. (1950) Methods for egg counts and larval cultures for strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research 1, 99102.CrossRefGoogle Scholar
Sinott, M.C., Cunha Filho, N.A., Castro, L.L.D., Lorenzon, L.B., Pinto, N.B., Capella, G.A. & Leite, F.P.L. (2012) Bacillus spp. toxicity against Haemonchus contortus larvae in sheep faecal cultures. Experimental Parasitology 132, 103108.CrossRefGoogle Scholar
Urban, J.F., Hu, Y., Miller, M.M., Scheib, U., Yiu, Y.Y. & Aroian, R.V. (2013) Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum. PLoS Neglected Tropical Diseases 7, e2263.CrossRefGoogle ScholarPubMed
Whitney, T.R., Wildeus, S. & Zajac, A.M. (2013) The use of redberry juniper (Juniperus pinchotii) to reduce Haemonchus contortus faecal egg counts and increase ivermectin efficacy. Veterinary Parasitology 197, 182188.CrossRefGoogle ScholarPubMed
Yousten, A.A. (1984) Bacillus sphaericus: microbiological factors related to its potential as a mosquito larvicide. Advances in Biotechnological Processes 3, 315343.Google ScholarPubMed