Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T13:00:31.987Z Has data issue: false hasContentIssue false

Genetic and infective diversity of the liver fluke Fasciola hepatica (Trematoda: Digenea) from Cuba

Published online by Cambridge University Press:  14 January 2016

A.A. Vázquez*
Affiliation:
MIVEGEC, UMR IRD 224 CNRS 5290 UM, 911 Avenue Agropolis, BP 64 501, 34 394Montpellier Cedex 5, France Laboratorio de Malacología, Instituto de Medicina Tropical Pedro Kourí, Apartado Postal 601, Marianao 13, La Habana, Cuba
M. Lounnas
Affiliation:
MIVEGEC, UMR IRD 224 CNRS 5290 UM, 911 Avenue Agropolis, BP 64 501, 34 394Montpellier Cedex 5, France
J. Sánchez
Affiliation:
Laboratorio de Malacología, Instituto de Medicina Tropical Pedro Kourí, Apartado Postal 601, Marianao 13, La Habana, Cuba
A. Alba
Affiliation:
Laboratorio de Malacología, Instituto de Medicina Tropical Pedro Kourí, Apartado Postal 601, Marianao 13, La Habana, Cuba
A. Milesi
Affiliation:
MIVEGEC, UMR IRD 224 CNRS 5290 UM, 911 Avenue Agropolis, BP 64 501, 34 394Montpellier Cedex 5, France
S. Hurtrez-Boussès
Affiliation:
MIVEGEC, UMR IRD 224 CNRS 5290 UM, 911 Avenue Agropolis, BP 64 501, 34 394Montpellier Cedex 5, France Département de Biologie-Ecologie (Faculté des Sciences) - cc 046 - Université Montpellier, 4 Place Eugène Bataillon, 34 095Montpellier Cedex 5, France
*

Abstract

In this study we present the first approach to exploration of the genetic diversity of Cuban Fasciola hepatica populations using microsatellite markers, coupled with observed prevalence in slaughterhouses. Nine populations of flukes recovered from cows and buffalos were studied in the central-western region of Cuba. The observed infection rates of definitive hosts (bovines) were 70–100% in most cases. An important amount of polymorphism was found in the four loci explored. However, no apparent genetic differences were found between populations from different provinces or bovine species. The absence of deviations from Hardy–Weinberg equilibrium suggests a high rate of cross-fertilization between F. hepatica individuals. This result was confirmed when all multilocus genotypes were tested for clonal reproduction and only four individuals differed statistically (Psex< 0.05). High values of expected heterozygosity coupled with highly probable mixing among strains make the metapopulation genetically diversified but similar in terms of certain alleles (low FST values). These results suggest a close relationship between parasite diversity and cattle management in Cuba. Our findings should be taken into consideration by veterinary authorities to help mitigate fasciolosis transmission.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaud-Haond, S. & Belkhir, K. (2007) GenClone 2.0: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Available at http://si-wagner.ualg.pt/ccmar/maree/software.php?soft = genclon (accessed accessed 20 July 2015).Google Scholar
Correa, A., Escobar, J., Durand, P., David, P., Jarne, P., Pointier, J. & Hurtrez-Boussès, S. (2010) Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of fascioliasis. Evolutionary Biology 10, 381.Google Scholar
Cwiklinski, K., Allen, K., LaCourse, E., Williams, D. & Paterson, S. (2015) Characterisation of a novel panel of polymorphic microsatellite loci for the liver fluke, Fasciola hepatica, using a next generation sequencing approach. Infection, Genetics and Evolution 32, 298304.Google Scholar
de Meeûs, T., McCoy, K., Prugnolle, F., Chevillon, C., Durand, P., Hurtrez-Boussès, S. & Renaud, F. (2007) Population genetics and molecular epidemiology or how to ‘débusquer la bête’. Infection, Genetics and Evolution 7, 308332.CrossRefGoogle ScholarPubMed
Dorni, P., Praet, N., Deckers, N. & Gabriel, S. (2009) Emerging food-borne parasites. Veterinary Parasitology 163, 196206.Google Scholar
Dybdahl, M. & Storfer, A. (2003) Parasite local adaptation: Red Queen versus Suicide King. Trends in Ecology and Evolution 18, 523530.CrossRefGoogle Scholar
Esteban, J., González, C., Curtale, F., Muñoz-Antoli, C., Valero, M., Bargues, M., El Sayed, M., El Wakeel, A., Abdel-Wahab, Y., Montresor, A., Engels, D., Savioli, L. & Mas-Coma, S. (2003) Hyperendemic fascioliasis associated with schistosomiasis villages in the Nile Delta of Egypt. American Journal of Tropical Medicine and Hygiene 69, 429437.Google Scholar
Estoup, A. & Martin, O. (1996) Marqueurs microsatellites: isolement à l'aide de sondes non-radioactives, caractérization et mise au point. Available at http://www.inapg.inra.fr/dsa/microsat/microsat.htm (accessed accessed 23 September 2004).Google Scholar
Fried, B. & Abruzzi, A. (2010) Food-borne trematode infections of humans in the United States of America. Parasitology Research 106, 12631280.CrossRefGoogle ScholarPubMed
Fuentes, M. (2006) Remote sensing and climate data as a key for understanding fasciolosis transmission in the Andes: review and update of an ongoing interdisciplinary project. Geospatial Health 1, 5970.Google Scholar
Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y. & Olivieri, I. (1996) Local adaptation and gene-for-gene coevolution in a metapopulation model. Proceedings of the Royal Society London B 263, 10031009.Google Scholar
Goudet, J. (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Available at http://www.unil.ch/izea/softwares/fstat.html (accessed accessed 19 May 2012).Google Scholar
Gutiérrez, A., Vázquez, A., Hevia, Y., Sánchez, J., Correa, A., Hurtrez-Boussès, S., Pointier, J. & Théron, A. (2011) First report of larval stages of Fasciola hepatica in a wild population of Pseudosuccinea columella from Cuba and the Caribbean. Journal of Helminthology 85, 109111.Google Scholar
Hamilton, W., Axelrod, R. & Tanese, R. (1990) Sexual reproduction as an adaptation to resist parasites. Proceedings of the National Academy of Sciences, USA 87, 35663573.Google Scholar
Hanna, R., Edgar, H., Moffett, D., McConnell, S., Fairweather, I., Brennan, G., Trudgett, A., Hoey, E., Cromie, L., Taylor, S. & Daniel, R. (2008) Fasciola hepatica: histology of the testis in egg-producing adults of several laboratory-maintained isolates of flukes grown to maturity in cattle and sheep and in flukes from naturally infected hosts. Veterinary Parasitology 157, 222234.CrossRefGoogle ScholarPubMed
Hawley, D. & Altizer, S. (2011) Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Functional Ecology 25, 4860.Google Scholar
Hurtrez-Boussès, S., Meunier, C., Durand, C. & Renaud, F. (2001) Dynamics of host–parasite interactions: the example of population biology of the liver fluke (Fasciola hepatica). Microbes and Infection 3, 841849.Google Scholar
Hurtrez-Boussès, S., Durand, P., Jabbour-Zahab, R., Guégan, J., Meunier, C., Bargues, M., Mas-Coma, S. & Renaud, F. (2004) Isolation and characterization of microsatellite markers in the liver fluke (Fasciola hepatica). Molecular Ecology 4, 689690.Google Scholar
Jarne, P. & Théron, A. (2001) Genetic structure in natural populations of flukes and snails: a practical approach and review. Parasitology 123, 2740.CrossRefGoogle ScholarPubMed
Johachim, H., Little, T. & Ebert, D. (2001) Genetic variation in a host–parasite association: potential for coevolution and frequency-dependent selection. Evolution 55, 11361145.Google Scholar
Khan, M., Sajid, M., Riaz, H., Ahmed, N., He, L., Shahzad, M., Hussain, A., Khan, M., Iqbal, Z. & Zhao, J. (2013) The global burden of fasciolosis in domestic animals with an outlook on the contribution of new approaches for diagnosis and control. Parasitology Research 112, 24212430.CrossRefGoogle ScholarPubMed
Mas-Coma, S., Valero, M.A. & Bargues, M.D. (2009) Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Advances in Parasitology 69, 41146.Google Scholar
Meunier, C., Tirard, C., Hurtrez-Boussès, S., Durand, P., Bargues, M., Mas-Coma, S., Pointier, J., Jourdane, J. & Renaud, F. (2001) Lack of molluscan host diversity and the transmission of an emerging parasitic disease in Bolivia. Molecular Ecology 10, 13331340.Google Scholar
Mitat, A. (2009) Búfalos de Agua en Cuba: Orígen y evolución. Asociación Cubana de Producción Animal 3, 4548.Google Scholar
Rice, H. (1984) Analysing tables of statistical tests. Evolution 43, 223225.Google Scholar
Rojas, L., Vázquez, A., Domenech, I. & Robertson, L. (2010) Fascioliasis: can Cuba conquer this emerging parasitosis? Trends in Parasitology 26, 2634.Google Scholar
Schulte, R., Makus, C. & Schulemburg, H. (2013) Host–parasite coevolution favours parasite genetic diversity and horizontal gene transfer. Journal of Evolutionary Biology 26, 18361840.Google Scholar
Thompson, J. (1994) The coevolutionary process. Chicago, The University of Chicago Press.Google Scholar
Tolan, R. (2011) Fascioliasis due to Fasciola hepatica and Fasciola gigantica infection: an update on this ‘neglected’ neglected tropical disease. LabMedicine 42, 107116.Google Scholar
Uffo, O., Acosta, A., Martínez, S. & Ronda, R. (2012) Genetic characterization of Cuban Creole cattle using molecular tools. Biotecnología Aplicada 29, 127128.Google Scholar
Valero, M., Perez-Crespo, I., Khoubbane, M., Artigas, P., Panova, M., Ortiz, P., Maco, V., Espinoza, J. & Mas-Coma, S. (2012) Fasciola hepatica phenotypic characterization in Andean human endemic areas: valley versus altiplanic patterns analysed in liver flukes from sheep from Cajamarca and Mantaro, Peru. Infection, Genetics and Evolution 12, 403410.Google Scholar
Vázquez, A., Sánchez, J. & Hevia, Y. (2009) Distribución y preferencia de hábitats de moluscos hospederos intermediarios de Fasciola hepatica en Cuba. Revista Cubana de Medicina Tropical 61, 248253.Google Scholar
Vázquez, A., Sánchez, J., Pointier, J., Théron, A. & Hurtrez-Boussès, S. (2014) Fasciola hepatica in Cuba: compatibility of different isolates with two intermediate snail hosts, Galba cubensis and Pseudosuccinea columella . Journal of Helminthology 88, 434440.Google Scholar
Vilas, R., Vázquez-Prieto, S. & Paniagua, E. (2012) Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance. Infection, Genetics and Evolution 12, 4552.Google Scholar
WHO (2007) The ‘neglected’ neglected worms. Actions Against Worms Newsletter December, 1–8.Google Scholar
WHO (2013) Sustaining the drive to overcome the global impact of neglected tropical diseases: second WHO report on neglected tropical diseases. WHO Technical Report Series. 152 pp. Geneva, WHO.Google Scholar