Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T05:45:15.006Z Has data issue: false hasContentIssue false

Turbulent boundary layer response to the introduction of stable stratification

Published online by Cambridge University Press:  13 December 2016

Tyler Van Buren*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Owen Williams
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Alexander J. Smits
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

The response of an initially neutral rough-wall turbulent boundary layer to a change in wall temperature is investigated experimentally. The change causes a localized peak in stable stratification that diffuses and moves away from the wall with downstream distance. The streamwise and wall-normal components of turbulent velocity fluctuations are damped at similar rates, even though the stratification only directly impacts the wall-normal component. The Reynolds shear profiles reveal the growth of an internal layer that scales approximately with the bulk Brunt–Väisälä frequency.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alving, A. E., Smits, A. J. & Watmuff, J. H. 1990 Turbulent boundary layer relaxation from convex curvature. J. Fluid Mech. 211, 529556.Google Scholar
Antonia, R. A., Danh, H. Q. & Prabhu, A. 1977 Response of a turbulent boundary layer to a step change in surface heat flux. J. Fluid Mech. 80 (01), 153177.CrossRefGoogle Scholar
Antonia, R. A. & Luxton, R. E. 1971 The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J. Fluid Mech. 48 (04), 721761.Google Scholar
Antonia, R. A. & Luxton, R. E. 1972 The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth. J. Fluid Mech. 53 (04), 737757.Google Scholar
Arya, S. P. S. 1975 Buoyancy effects in a horizontal flat-plate boundary layer. J. Fluid Mech. 68 (02), 321343.Google Scholar
Chung, D. & Matheou, G. 2012 Direct numerical simulation of stationary homogenous stratified sheared turbulence. J. Fluid Mech. 696, 434467.Google Scholar
Fedorovich, E., Kaiser, R., Rau, M. & Plate, E. 1996 Wind tunnel study of turbulent flow structure in the convective boundary layer capped by a temperature inversion. J. Atmos. Sci. 53 (9), 12731289.2.0.CO;2>CrossRefGoogle Scholar
Garratt, J. R. 1990 The internal boundary layer – a review. Boundary-Layer Meteorol. 50 (1–4), 171203.Google Scholar
Hara, T., Ohya, Y., Uchida, T. & Ohba, R. 2009 Wind-tunnel and numerical simulations of the coastal thermal internal boundary layer. Boundary-Layer Meteorol. 130 (3), 365381.Google Scholar
Johnson, D. S. 1957 Velocity, temperature and heat transfer measurements in a turbulent boundary layer downstream of a stepwise discontinuity in wall temperature. Trans. ASME J. Appl. Mech. 24 (2), 28.Google Scholar
Ligrani, P. M. & Moffat, R. J. 1985 Thermal boundary layers on a rough surface downstream of steps in wall temperature. Boundary-Layer Meteorol. 31 (2), 127147.Google Scholar
Mahrt, L. 1998 Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn. 11 (3-4), 263279.Google Scholar
Mahrt, L. 1999 Stratified atmospheric boundary layers. Boundary-Layer Meteorol. 90 (3), 375396.Google Scholar
Mahrt, L. 2000 Surface heterogeneity and vertical structure of the boundary layer. Boundary-Layer Meteorol. 96 (1-2), 3362.CrossRefGoogle Scholar
Mukerji, D., Eaton, J. K. & Moffat, R. J. 2004 Convective heat transfer near one-dimensional and two-dimensional wall temperature steps. Trans. ASME J. Heat Transfer 126 (2), 202210.Google Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes. In VDI Forschungsheft. Citeseer.Google Scholar
Ogawa, Y., Diosey, P. G., Uehara, K. & Ueda, H. 1985 Wind tunnel observation of flow and diffusion under stable stratification. Atmos. Environ. (1967) 19 (1), 6574.Google Scholar
Ohya, Y. 2001 Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol. 98 (1), 5782.CrossRefGoogle Scholar
Ohya, Y., Neff, D. E. & Meroney, R. N. 1997 Turbulence structure in a stratified boundary layer under stable conditions. Boundary-Layer Meteorol. 83 (1), 139162.CrossRefGoogle Scholar
Shah, S. K. & Bou-Zeid, E. 2014 Direct numerical simulations of turbulent ekman layers with increasing static stability: modifications to the bulk structure and second-order statistics. J. Fluid Mech. 760, 494539.Google Scholar
Simpson, R. L. 1971 The effect of a discontinuity in wall blowing on the turbulent incompressible boundary layer. Intl J. Heat Mass Transfer 14 (12), 20832097.Google Scholar
Smits, A. J. & Wood, D. H. 1985 The response of turbulent boundary layers to sudden perturbations. Annu. Rev. Fluid Mech. 17 (1), 321358.Google Scholar
Squire, L. C., Thomas, G. D. & Marriott, P. G. 1977 Compressible turbulent boundary layers with injection. AIAA J. 15 (3), 425427.Google Scholar
Stoll, R. & Porté-Agel, F. 2009 Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions. J. Atmos. Sci. 66 (2), 412431.Google Scholar
Taylor, P. A., Mason, P. J. & Bradley, E. F. 1987 Boundary-layer flow over low hills. Boundary-Layer Meteorol. 39 (1-2), 107132.Google Scholar
Venkatram, A. 1977 A model of internal boundary-layer development. Boundary-Layer Meteorol. 11 (4), 419437.CrossRefGoogle Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for piv data. Exp. Fluids 39 (6), 10961100.Google Scholar
Williams, O.2014 Density effects on turbulent boundary layer structure: from the atmosphere to hypersonic flow. PhD thesis, Princeton University.Google Scholar
Williams, O., Hohman, T., Van Buren, T. & Smits, A. 2016 The effect of stable thermal stratification on turbulent boundary layer statistics. J. Fluid Mech. (in press).Google Scholar
Wood, D. H. 1982 Internal boundary layer growth following a step change in surface roughness. Boundary-Layer Meteorol. 22 (2), 241244.Google Scholar